• Title/Summary/Keyword: FDIR

Search Result 4, Processing Time 0.024 seconds

Concepts in COMS Failure Management System (통신해양기상위성 고장관리 시스템 개념)

  • Lee, Hoonhee;Kim, Bangyeop;Baek, MyungJin;Yang, Koonho;Chun, Yongsik
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.31-38
    • /
    • 2009
  • COMS On-board FDIR(Failure Detection, Isolation and Recovery) functions are implemented on the on-board software to satisfy the autonomy and failure tolerance requirements. This paper presents concepts of COMS Failure Management with hierarchical layers and addresses the characteristics of the FDIR layer from low level to high level. It is aimed at giving the reader the understanding how the COMS FDIR was designed and how works. It first recalls what are the system level applicable requirements, which are based on the COMS mission requirements. Then it describes the philosophy and structure of the FDIR and subsequently breaks it down into the several FDIR layers. It could be used as an important and useful reference of the information to design and develop an automatic FDIR mechanism in the future.

  • PDF

A Study of FDIR S/W Design and Verification for Gyro Sensor of COMS Satellite (통신해양기상위성 자이로센서 FDIR 설계 및 검증에 관한 연구)

  • Lee, Hoon-Hee
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.95-102
    • /
    • 2008
  • COMS Satellite is automatically able to recover from any defined failure thanks to a full redundancy. This study assesses the effects of gyro failure on the COMS mission and analyzes the mechanism of Gyro Failure Detection, Isolation and Recovery about failure detection means, isolation and recovery actions and their consequences. At last, it checks the FDIR behavior from an injected failure on COMS simulator.

  • PDF

COMS MPIU FDIR(Fault Detection, Isolation & Recovery) Analysis (천리안 위성의 탑재체 접속장치에 대한 고장감지, 격리 및 회복에 대한 분석)

  • Cho, Young-Ho;Won, Joo-Ho;Lee, Yun-Ki;Kwon, Ki-Ho;Lee, Sang-Kon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2025-2026
    • /
    • 2011
  • 위성의 가장 큰 제한 중에 하나는 발사하면 더 이상의 수리가 불가능하다는 것이다. 그래서 사용하는 위성의 부품 및 시스템에 대하여 신뢰성 검증이 지상에서 많이 이루지고 있지만 모든 고장을 막을 수 있는 것은 불가능함으로 이에 대한 감시 및 고장시 대처하는 기능이 필요하다. 위성의 고장운영(fault management)은 탑재소프트웨어나 하드웨어로 구현하여 운영 중 시스템의 이상상황(anomaly)을 모니터링하고 이상상황이 발생한 경우 시스템이 안전하도록 조치하는 것이다. 본 논문은 천리안위성의 FDIR구조를 소개하였고 탑재체접속장치 경우 설계된 FDIR를 분석하였다.

  • PDF

MI2U CONTROL FLIGHT SOFTWARE DESIGN AND DEVELOPMENT IN COMS

  • Kang, Seo-Yeon;Park, Su-Hyun;Koo, Cheol-Hae;Yang, Koon-Ho;Choi, Seong-Bong
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.271-273
    • /
    • 2006
  • In this paper, we describe the MI2U ORB function which is a part of the flight software executed on SCU and controls MI2U/MI which is one of three payloads on COMS. The MI2U ORB function manages MI2U/MI redundancy and reconfiguration, monitors MI2U/MI equipment, performs FDIR, and provides the routing service of commands from Ground/IP (Interpreted Program) through the current used 1553 channel. The MI2U hardware achieves the interface between the SCU and the MI. The MI2U is connected to SCU through MIL-STD-1553B system bus. The MI2U has the internal redundancy but is used in cold redundancy. The MI2U ORB function considers that they are not expected to be simultaneously switched on. The connection combination between MI2U and MI is electrically cross-strapped. However the MI2U ORB function considers only two combinations (MI2U A + MI 1, MI2U B + MI 2). Other combinations can be manually achieved by ground in case of the emergency case.

  • PDF