• Title/Summary/Keyword: FDG PET-CT

Search Result 415, Processing Time 0.023 seconds

The Evaluation of Attenuation Difference and SUV According to Arm Position in Whole Body PET/CT (전신 PET/CT 검사에서 팔의 위치에 따른 감약 정도와 SUV 변화 평가)

  • Kwak, In-Suk;Lee, Hyuk;Choi, Sung-Wook;Suk, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • Purpose: For better PET imaging with accuracy the transmission scanning is inevitably required for attenuation correction. The attenuation is affected by condition of acquisition and patient position, consequently quantitative accuracy may be decreased in emission scan imaging. In this paper, the present study aims at providing the measurement for attenuation varying with the positions of the patient's arm in whole body PET/CT, further performing the comparative analysis over its SUV changes. Materials and Methods: NEMA 1994 PET phantom was filled with $^{18}F$-FDG and the concentration ratio of insert cylinder and background water fit to 4:1. Phantom images were acquired through emission scanning for 4min after conducting transmission scanning by using CT. In an attempt to acquire image at the state that the arm of the patient was positioned at the lower of ahead, image was acquired in away that two pieces of Teflon inserts were used additionally by fixing phantoms at both sides of phantom. The acquired imaged at a were reconstructed by applying the iterative reconstruction method (iteration: 2, subset: 28) as well as attenuation correction using the CT, and then VOI was drawn on each image plane so as to measure CT number and SUV and comparatively analyze axial uniformity (A.U=Standard deviation/Average SUV) of PET images. Results: It was found from the above phantom test that, when comparing two cases of whether Teflon insert was fixed or removed, the CT number of cylinder increased from -5.76 HU to 0 HU, while SUV decreased from 24.64 to 24.29 and A.U from 0.064 to 0.052. And the CT number of background water was identified to increase from -6.14 HU to -0.43 HU, whereas SUV decreased from 6.3 to 5.6 and A.U also decreased from 0.12 to 0.10. In addition, as for the patient image, CT number was verified to increase from 53.09 HU to 58.31 HU and SUV decreased from 24.96 to 21.81 when the patient's arm was positioned over the head rather than when it was lowered. Conclusion: When arms up protocol was applied, the SUV of phantom and patient image was decreased by 1.4% and 9.2% respectively. With the present study it was concluded that in case of PET/CT scanning against the whole body of a patient the position of patient's arm was not so much significant. Especially, the scanning under the condition that the arm is raised over to the head gives rise to more probability that the patient is likely to move due to long scanning time that causes the increase of uptake of $^{18}F$-FDG of brown fat at the shoulder part together with increased pain imposing to the shoulder and discomfort to a patient. As regarding consideration all of such factors, it could be rationally drawn that PET/CT scanning could be made with the arm of the subject lowered.

  • PDF

Thoracic Nodal Staging in Non-small Cell Lung Cancer by FDG-PET (비소세포폐암의 병기 판정에 있어서 N staging에서의 PET의 역할)

  • Yoo, Ji-Hoon;Kwon, Sung-Youn;Yoo, Chul-Gyu;Lee, Choon-Taek;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.3
    • /
    • pp.290-297
    • /
    • 2000
  • Background : Current non-invasive methods for evaluating the mediastinum by computed tomographic (CT) scan have limited sensitivity and specificity. The recently introduced PET was reported to be a more sensitive and specific method for the mediastinal staging of NSCLC (sensitivity : 76-100 %, specificity : 81-100%) than CT or MRI. We assessed the usefulness of PET in the mediastinal staging of NSCLC. Methods : We reviewed the medical records of NSCLC patients that had undertaken staging work-up by both CT and PET before thoracotomy between January 1997 and December 1998. A total of 23 patients were enrolled in the study (14 males and 7 females) with a mean age of 61$\pm$9 years. By comparing the clinical(CT and PET) and pathologic stagings, we evaluated the sensitivity, specificity, positive predictive value, negative predictive value and accuracy of PET in thoracic nodal staging. Results : Sensitivity, specificity, positive predicted value and negative predicted value were 38%, 40%, 25% and 50% respectively for computed tomography, and 50%, 60%, 30% and 69% for PET. The accuracy of FDG-PET in our study was lower than that reported by previous other studies. Conclusion : The addition of FDG-PET to CT scanning has limited benefit for the thoracic nodal staging of NSCLC, but its value in our study was lower than that observed by others.

  • PDF

Spinal Accessory Neuropathy Secondary to Diffuse Large B-Cell Lymphoma (미만성 거대 B세포 림프종으로 인한 척수더부신경병증)

  • Kim, Kunwoo;Lee, Yong-Taek;Yoon, Kyung Jae;Lee, Jung-Sang;Hwang, Jin-Tae;Do, Jong Geol
    • Clinical Pain
    • /
    • v.18 no.1
    • /
    • pp.52-57
    • /
    • 2019
  • Spinal accessory neuropathy (SAN) is commonly caused by an iatrogenic procedure, and that caused by tumors is very rare. We present a case of a 49-year-old man suffering from weakness in the right trapezius and sternocleidomastoid muscle. An electrophysiology study confirmed proximal SAN. Fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) revealed a diffuse large B-cell lymphoma compressing the right spinal accessory nerve. Ultrasonography showed definite atrophy on the trapezius and sternocleidomastoid muscles. In addition, post-chemotherapy FDG-PET/CT showed increased FDG uptake in the right upper trapezius, suggestive of denervation. This is the first report of SAN caused by direct compression by a diffuse large B-cell lymphoma, comprehensively assessed by an electrophysiology study, ultrasonography, and FDG-PET/CT.

The Study of Usefulness of Metal Artifact Reduction Algorithm and Artifacts Caused by Metallic Hip Prosthesis on PET/CT (PET/CT에서의 고관절 삽입물에 의한 인공물과 Metal Artifact Reduction Algorithm의 유용성에 대한 고찰)

  • Park, Min Soo;Ham, Jun Cheol;Cho, Yong In;Kang, Chun Goo;Park, Hoon-Hee;Lim, Han Sang;Lee, Chang Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.35-43
    • /
    • 2012
  • Purpose : PET/CT performed CT-based attenuation correction generates the beam hardening artifact by metallic implant. The attenuation correction causes over or underestimate of the area adjacent to metallic hip prosthetic material and change of $^{18}F$-FDG uptake. Also, the image quality and the diagnosability on genitourinary disease are reduced. Therefore, this study will evaluate the usefulness of MAR (Metal Artifact Reduction) algorithm method to improve the image quality on PET/CT. Materials and Methods : PET/CT was performed by fixing hip prosthesis in SPECT/PET phantom. In PET images with and Without MAR algorithm, the Bright streak, Dark streak, Metal region and Background area that appeared on CT were confirmed, and the change of each SUV (standardized uptake value) was analyzed. Also, in 15 patients who underwent total hip arthroplasty, each MAR algorithm and Without MAR algorithm and non attenuation correction was evaluated. Results : In PET image Without MAR algorithm, SUV of Bright streak region was $0.98{\pm}0.48$ g/ml; Dark streak region was $0.88{\pm}0.02$ g/ml; Metal region was $0.24{\pm}0.16$ g/ml, Background area was $0.91{\pm}0.18$ g/ml. In SUV of PET image with MAR algorithm, Bright streak region was $0.88{\pm}0.49$ g/ml, Dark streak region was $0.63{\pm}0.21$ g/ml, Metal region was $0.06{\pm}0.07$ g/ml, Background was $0.90{\pm}0.02$ g/ml. SUV generally decreased when applying MAR algorithm. In PET image Without MAR algorithm, SUVs of Bright region were higher than those measured in the Background, and it was false positive uptake. But, in PET image with MAR algorithm, SUVs of Bright region were similar to the Background, and false positive uptake disappeared. Conclusion : MAR algorithm could reduce an increase of $^{18}F$-FDG uptake due to attenuation correction in the hip surrounding tissue. However, decrease of SUV in Dark streak region should be considered in the future. Therefore, this study propose that the diagnostic accuracy can be improved in genitourinary diseases adjacent to metallic hip prosthesis, if provided PET images with and Without MAR algorithm, and non attenuation correction images at the same time.

  • PDF

Analysis of Respiratory Motion Artifacts in PET Imaging Using Respiratory Gated PET Combined with 4D-CT (4D-CT와 결합한 호흡게이트 PET을 이용한 PET영상의 호흡 인공산물 분석)

  • Cho, Byung-Chul;Park, Sung-Ho;Park, Hee-Chul;Bae, Hoon-Sik;Hwang, Hee-Sung;Shin, Hee-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Purpose: Reduction of respiratory motion artifacts in PET images was studied using respiratory-gated PET (RGPET) with moving phantom. Especially a method of generating simulated helical CT images from 4D-CT datasets was developed and applied to a respiratory specific RGPET images for more accurate attenuation correction. Materials and Methods: Using a motion phantom with periodicity of 6 seconds and linear motion amplitude of 26 mm, PET/CT (Discovery ST: GEMS) scans with and without respiratory gating were obtained for one syringe and two vials with each volume of 3, 10, and 30 ml respectively. RPM (Real-Time Position Management, Varian) was used for tracking motion during PET/CT scanning. Ten datasets of RGPET and 4D-CT corresponding to every 10% phase intervals were acquired. from the positions, sizes, and uptake values of each subject on the resultant phase specific PET and CT datasets, the correlations between motion artifacts in PET and CT images and the size of motion relative to the size of subject were analyzed. Results: The center positions of three vials in RGPET and 4D-CT agree well with the actual position within the estimated error. However, volumes of subjects in non-gated PET images increase proportional to relative motion size and were overestimated as much as 250% when the motion amplitude was increased two times larger than the size of the subject. On the contrary, the corresponding maximal uptake value was reduced to about 50%. Conclusion: RGPET is demonstrated to remove respiratory motion artifacts in PET imaging, and moreover, more precise image fusion and more accurate attenuation correction is possible by combining with 4D-CT.

The Difference of Standardized Uptake Value on PET-CT According to Change of CT Parameters (PET-CT에서 CT의 관전압 및 관전류에 따른 SUV값의 변화)

  • Shin, Gyoo-Seul;Dong, Kyeong-Rae
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.373-379
    • /
    • 2007
  • Purpose : There is difference between PET and PET/CT method on their transmission image for attenuation correction. The CT image is used for attenuation correction on PET/CT and the parameters of CT may be affected on PET image. We performed the phantom study to evaluate whether the change of CT parameters(kilovolts peak and milliampere) affect standardized uptake value(SUV) on PET image. Material and Method: The data spectrum lung phantom containing diluted [18F]fluorodeoxyglucose ([18F]FDG) solution(1.909 mCi for phantom 1, $913\;{\mu}Ci$ for phantom 2) was used. The CT images of phantom were acquired with varying parameters (80, 100, 120, 140 for kVp, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 for mA). The PET images were reconstructed with the each CT images and SUVs were compared. Result : The SUVs of phantom 1 reconstructed with each 80, 100, 120 and 140 kVp showed $12.26{\pm}0.009$, $12.27{\pm}0.005$, $12.27{\pm}0.006$ and $12.27{\pm}0.009$, respectively. The SUVs of phantom 2 revealed $4.52{\pm}0.043$, $4.53{\pm}0.004$, $4.52{\pm}0.007$ and $4.52{\pm}0.005$ with elevation of voltage. There was no statistically significant difference of SUVs between groups based on various kVp. Also SUVs of phantom 1 and 2 showed no significant change with elevation of milliampere in CT parameter. Conclusion : The parameters of CT did not significantly affect SUV on PET image in our study. Therefore we can apply various parameters of CT appropriated for clinical conditions without significant change of SUV on PET CT image.

  • PDF

Potential Impact of Atelectasis and Primary Tumor Glycolysis on F-18 FDG PET/CT on Survival in Lung Cancer Patients

  • Hasbek, Zekiye;Yucel, Birsen;Salk, Ismail;Turgut, Bulent;Erselcan, Taner;Babacan, Nalan Akgul;Kacan, Turgut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4085-4089
    • /
    • 2014
  • Background: Atelectasis is an important prognostic factor that can cause pleuritic chest pain, coughing or dyspnea, and even may be a cause of death. In this study, we aimed to investigate the potential impact of atelectasis and PET parameters on survival and the relation between atelectasis and PET parameters. Materials and Methods: The study consisted of patients with lung cancer with or without atelectasis who underwent $^{18}F$-FDG PET/CT examination before receiving any treatment. $^{18}F$-FDG PET/CT derived parameters including tumor size, SUVmax, SUVmean, MTV, total lesion glycosis (TLG), SUV mean of atelectasis area, atelectasis volume, and histological and TNM stage were considered as potential prognostic factors for overall survival. Results: Fifty consecutive lung cancer patients (22 patients with atelectasis and 28 patients without atelectasis, median age of 65 years) were evaluated in the present study. There was no relationship between tumor size and presence or absence of atelectasis, nor between presence/absence of atelectasis and TLG of primary tumors. The overall one-year survival rate was 83% and median survival was 20 months (n=22) in the presence of atelectasis; the overall one-year survival rate was 65.7% (n=28) and median survival was 16 months (p=0.138) in the absence of atelectasis. With respect to PFS; the one-year survival rate of AT+ patients was 81.8% and median survival was 19 months; the one-year survival rate of AT-patients was 64.3% and median survival was 16 months (p=0.159). According to univariate analysis, MTV, TLG and tumor size were significant risk factors for PFS and OS (p<0.05). However, SUVmax was not a significant factor for PFS and OS (p>0.05). Conclusions: The present study suggested that total lesion glycolysis and metabolic tumor volume were important predictors of survival in lung cancer patients, in contrast to SUVmax. In addition, having a segmental lung atelectasis seems not to be a significant factor on survival.

Consideration of the Usefulness of 18F-FET Brain PET/CT in Brain Tumor Diagnosis (뇌종양진단에 있어 18F-FET Brain PET/CT의 유용성에 대한 고찰)

  • Kyu-Ho Yeon; Jae-Kwang Ryu
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.41-47
    • /
    • 2024
  • Purpose: 18F-FET, a radiopharmaceutical based on a Tyrosine amino acid derivative using the Sodium-Potassium Pump-independent Transporter (System L) for non-invasive evaluation of primary, recurrent, and metastatic brain tumors, exhibits distinct characteristics. Unlike the widely absorbed 18F-FDG in both tumor and normal brain tissues, 18F-FET demonstrates specific uptake only in tumor tissue while almost negligible uptake in normal brain tissue. This study aims to compare and evaluate the usefulness of 18F-FDG and 18F-FET Brain PET/CT quantitative analysis in brain tumor diagnosis. Materials and Methods: In 46 patients diagnosed with brain gliomas (High Grade: 34, Low Grade: 12), Brain PET/CT scans were performed at 40 minutes after 18F-FDG injection and at 20 minutes (early) and 80 minutes (delay) after 18F-FET injection. SUVmax and SUVpeak of tumor areas corresponding to MRI images were measured in each scan, and the SUVmax-to-SUVpeak ratio, an indicator of tumor prognosis, was calculated. Differences in SUVmax, SUVpeak, and SUVmax-to-SUVpeak ratio between 18F-FDG and 18F-FET early/delay scans were statistically verified using SPSS (ver.28) package program. Results: SUVmax values were 3.72±1.36 for 18F-FDG, 4.59±1.55 for 18F-FET early, and 4.12±1.36 for 18F-FET delay scans. The highest SUVmax was observed in 18F-FET early scans, particularly in HG tumors (4.85±1.44), showing a slightly more significant difference (P<0.0001). SUVpeak values were 3.33±1.13 for 18F-FDG, 3.04±1.11 for 18F-FET early, and 2.80±0.96 for 18F-FET delay scans. The highest SUVpeak was in 18F-FDG scans, while the lowest was in 18F-FET delay scans, with a more significant difference in HG tumors (P<0.001). SUVmax-to-SUVpeak ratio values were 1.11±0.09 for 18F-FDG, 1.54±0.22 for 18F-FET early, and 1.48±0.17 for 18F-FET delay scans. This ratio was higher in 18F-FET scans for both HG and LG tumors (P<0.0001), but there was no statistically significant difference between 18F-FET early and delay scans. Conclusion: This study confirms the usefulness of early and delay scans in 18F-FET Brain PET/CT examinations, particularly demonstrating the changes in objective quantitative metrics such as SUVmax, SUVpeak, and introducing the SUVmax-to-SUVpeak ratio as a new evaluation metric based on the degree of tumor malignancy. This is expected to further contributions to the quantitative analysis of Brain PET/CT images.

A correlation between comprehensive neck dissection and increased uptake around the sternoclavicular joint on post-operative 18F-FDG PET/CT (경부절제술과 술후 시행된 PET/CT상의 흉쇄관절 섭취 증가의 상관관계 분석)

  • Oh, So Won;Lee, Doh Young;Kim, Bo Hae;Kim, Kwang Hyun;Kim, Yu Kyeong;Jung, Young Ho
    • Korean Journal of Head & Neck Oncology
    • /
    • v.34 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • Background/Objectives: This study aimed to evaluate the changes of uptake around the sternoclavicular joint (SCJ) according to 18F-FDG PET images in patients with head and neck cancer who underwent neck dissection. Materials & Methods: Retrospectively, the medical records of patients who received selective or comprehensive neck dissection were reviewed. Preoperative and 1-year postoperative 18F-FDG PET images, if available, were analyzed by nuclear medicine physicians in both qualitative and quantitative manners. Correlation between the changes of uptake around SCJ and perioperative data were statistically analyzed. Results: Thirty-seven patients satisfying the inclusion criteria were enrolled. Seven patients with increased uptake around SCJ on 1-year postoperative 18F-FDG PET showed a correlation with radical or comprehensive neck dissection, accessory nerve sacrifice, and high postoperative SUVmax. When 20 patients with increased uptake around SCJ according to quantitative measurement were compared with other patients without increased uptake, no parameter was significantly different, except postoperative SUVmax. Bivariate logistic regression analysis revealed that the clinical symptom (shoulder or sternal pain) was significantly correlated with the extent of neck dissection (OR 0.227, CI 0.053-0.966, p=0.045) and spinal accessory nerve sacrifice (OR 13.500, CI 1.189-153.331, p=0.036). Conclusions: Increased uptake around SCJ on 1-year postoperative 18 F-FDG PET was correlated with either the radical or comprehensive procedure, as well as with accessory nerve sacrifice. This suggests that subjective analysis of 18F-FDG PET can be used to detect subclinical shoulder instability.