• Title/Summary/Keyword: FDE

Search Result 76, Processing Time 0.024 seconds

SC-FDE Design to Cope with Narrow Band Jammer (협대역 재머 대응을 위한 SC-FDE 구조 설계)

  • Ju, So-young;Jo, Sung-mi;Yu, Jeonghoon;Jeong, Eui-rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.614-616
    • /
    • 2017
  • In this paper, based on the conventional SC-FDE structure, we propose a new SC-FDE structure to cope with narrow band jammer. In the conventional SC-FDE structure, channel estimation is performed in the time domain. When a narrow band jammer exists, time-domain channel estimation is very difficult due to high power jamming interference, which degrades receiver performance. To relieve from this problem, a new SC-FDE frame is proposed to enable channel estimation under narrow band jamming environments. In this paper, we proposed a modified SC-FDE structure that can perform channel estimation in the frequency domain, and verified the performance via computer simulation.

  • PDF

안드로이드 FDE·FBE 복호화 연구 동향

  • Seo, Seunghee;Lee, Changhoon
    • Review of KIISC
    • /
    • v.29 no.6
    • /
    • pp.5-12
    • /
    • 2019
  • Full Disk Encryption(FDE)과 File Based Encryption(FBE)는 파일 디스크를 암호화하는 방식으로 안드로이드에서는 연락처, 문자 등의 사용자 데이터가 저장되는 데이터 파티션(/data)에 적용된다. FDE는 파티션 전체를 하나의 키로 암호화하는 방식이나 FBE는 2개 이상의 키로 파티션을 나누어 암호화한다. 이러한 FDE와 FBE는 기기 분실 및 도난 시 개인 정보 유출 피해를 방지할 수 있으나, 디지털 포렌식 수사 과정에서 증거 데이터 수집 및 분석을 어렵게 한다. 따라서 디지털 포렌식 관점의 FDE. FBE 분석 및 복호 방안에 관한 연구가 필요하다. 본 논문은 기존 FDE와 FBE의 복호 및 안전성 연구를 정리하고, 매년 FBE FDE가 보완되어 탑재되는 새로운 안드로이드 버전에 발맞춘 꾸준한 분석의 필요성을 시사한다.

MRC MMSE Equalization for SC-FDE in Amplify-and-Forward Relaying Networks (AF 방식 중계기 네트워크에서의 SC-FDE를 위한 MRC MMSE 등화 기법)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2011
  • Relay-assisted multiple input multiple output (MIMO) technique has become a promising candidate for next generation broadband wireless communications. In this paper, we propose maximum ratio combining (MRC) minimum mean-square-error (MMSE) equalization for single carrier-frequency domain equalizer (SC-FDE) in amplify-and-forward (AF) relaying networks. The performance of SC-FDE system can be improved considerably by achieving both the diversity gain and the MMSE equalization gain when the signals from source-destination (S->D) and source-relay-destination (S->R->D) are combined and equalized by means of the MMSE criteria. We find the weighting coefficients of MRC combining and the tap coefficients of MMSE equalizer for SC-FDE in AF relaying networks. Simulation results show that the proposed relay-based system considerably outperforms the conventional SC-FDE system.

Overhead Reduction by Channel Estimation Using Linear Interpolation for SC-FDE Transmission (SC-FDE 전송 방식에서 선형 보간법을 이용한 채널추정으로 오버헤드 감소 방안)

  • Song, Min-Su;Kil, Haeng-Bok;Kim, Jaesin;Jeong, Eui-Rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.611-613
    • /
    • 2017
  • This paper proposes a new method to reduce the overhead by pilots for single carrier frequency domain equalization (SC-FDE) transmission. In the conventional SC-FDE transmission structure, the overhead by transmitting pilot are heavy because the pilot are transmitted at every SC-FDE block. The proposed SC-FDE structure has fewer pilots and many SC-FCE blocks are transmitted between pilots. The channel estimation and equalization is performed at the pilot period and the channels between pilots are estimated through linear interpolation. This reduces the pilot overhead by reducing the pilot transmission compared with the conventional structure, and enables reliable channel estimation and equalization.

  • PDF

SC-FDE System Using Decision-Directed Method Over Time-Variant Fading Channels (시변 페이딩 채널에 대한 결정 지향 방식의 SC-FDE 시스템)

  • Kim, Ji-Heon;Yang, Jin-Mo;Kim, Whan-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.227-234
    • /
    • 2007
  • This paper describes a transmission method based on a single carrier with frequency domain equalization (SC-FDE) scheme with cyclic prefix(CP). The SC-FDE has similar features with orthogonal frequency division multiplexing(OFDM). Similar to OFDM, a SC-FDE system is computationally efficient since equalization is reformed on a block of data in the frequency domain. Especially, it has the advantage of low sensitivity to nonlinear distortion compared to OFDM. In this paper, we design a SC-FDE receiver using decision-directed method, and present simulation results.

Design of SC-FDE Transmission Structure to Cope with Narrow Band Interference (협대역 간섭신호 대응을 위한 SC-FDE 전송 구조 설계)

  • Joo, So-Young;Jo, Sung-Mi;Hwang, Chan-Ho;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.787-793
    • /
    • 2018
  • In this paper, we propose a new single carrier - frequency domain equalization (SC-FDE) structure to cope with narrow band interference. In the conventional SC-FDE structure, when a high-power narrow band interference exists, channel estimation and data recovery is difficult. To relieve from this problem, this paper proposes a new SC-FDE frame structure to enable frequency-domain channel estimation in the environments that exist narrow band interference. Specifically, in the conventional method, the channel estimation is performed in time-domain first and from that, the frequency-domain channel is obtained by Fourier transform. In contrast, we proposed a new SC-FDE structure to enable frequency-domain channel estimation directly from received signals without time-domain channel estimation. The receiver performance improvement is verified through computer simulation. According to the results, the proposed technique can detect the signal with less than 2 dB loss compared with jammer-free environments, while the conventional method does not communicate with each other.

Comparisons on Diversity Techniques for SC-FDE Systems (SC-FDE 시스템에서의 다이버시티 기술 비교)

  • Rim, Min-Joong;Kim, Hong-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.964-971
    • /
    • 2008
  • This paper compares the performances of cyclic delay diversity and phase rolling techniques for SC-FDE(Single Carrier with Frequency Domain Equalization) systems with multiple transmit antennas assuming time-flat and frequency-flat channels. In OFDM(Orthogonal Frequency Division Multiplexing) systems generation of time varying channels using phase rolling can result in performance gains comparable to those of frequency-selective channels made by cyclic delay diversity However, in SC-FDE systems making time-selective channels may produce better results than creation of frequency-selective channels.

The Implementation of Fractional Delay Element for High Speed Digital Data (고속 디지털 데이터를 위한 FDE의 구현)

  • 심재욱;김종훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.366-369
    • /
    • 2003
  • 현재 우리가 사용하고 있는 대부분의 시스템들은 대용량의 데이터를 송수신하고 있다. 대용량의 데이터를 전송하는 방법에는 여러방법이 있으나 한정되어 있는 대역폭을 사용하여 전송하기 위한 방법으로는 고속 전송을 사용한다. 많은 양의 데이터를 고속으로 전송을 하다 보면 여러가기 원인으로 인해 발생하는 지연에 대한 보정이 어려워 지게 된다. 이런 문제를 해결할 수 있는 방법중에 한가지가 바로 FDE(Fractional Delay Element)이다. FDE 는 1Clock 이하의 지연을 주는 소자로써 클럭 단위의 보정의 문제점을 해결한 것이다. 시스템 클럭을 고속으로 동작시키기에는 소자의 문제점이 있으나 FDE를 사용하면 시스템 클럭을 변화 없이 지연 보정을 할 수 있다. 본 논문에서는 VHDL 코딩과 FPGA 를 사용하여 FDE 를 구현 하였다. FDE 의 중요한 역할을 하는 FDF(Fractional Delay Filter)를 VHDL로 코딩을 하였다.

  • PDF

A New SC-FDE Transmission Structure for Coping with Narrow Band Jammers and Reducing Pilot Overhead (협대역 재머 대응과 파일럿 오버헤드 감소를 위한 새로운 SC-FDE 전송구조)

  • Joo, So-Young;Choi, Jeung-Won;Kim, Dong-Hyun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.981-987
    • /
    • 2019
  • In this paper, we propose a new SC-FDE (single carrier frequency domain equalization) structure to cope with narrow band interference signals or jammers and reduce pilot overhead. The conventional SC-FDE structure has a problem that the receiver performance degrades severely due to difficulty in time-domain channel estimation when narrow band jammers exist. In addition, the spectral efficiency is lowered by transmitting pilot at every SC-FDE block to estimate channel response. In order to overcome those problems, the proposed structure is devised to estimate frequency domain channel directly without time domain channel estimation. To reduce the pilot overhead, several data blocks are transmitted between two pilots. The channel estimate of each data block is found through linear interpolation of two channel estimates at two pilots. By performing frequency domain channel equalization using this channel estimate, the distortion by the channel is well compensated when narrow band jammers exist. The performance of the proposed structure is confirmed by computer simulation.

Relationships between Diversity Techniques and Channel Coding Rates for OFDM and SC-FDE Systems (OFDM 및 SC-FDE 시스템에서의 다이버시티 기술과 채널부호화율의 상관관계)

  • Rim, Min-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.11
    • /
    • pp.23-31
    • /
    • 2008
  • This paper addresses relationships between diversity techniques and channel coding rates for OFDM and SC-FDE systems. In OFDM systems it is important to select proper channel coding rates according to multi-path channel profiles and low channel coding rates are required with cyclic delay diversity compared to the case of space time coding. On the other hand, it is not necessary to use low channel coding rates for SC-FDE systems where DFT spreading is applied to OFDM and relatively high channel coding rates can be used regardless of diversity techniques.