• 제목/요약/키워드: FCM알고리즘

검색결과 176건 처리시간 0.116초

퍼지클러스터링 기법과 신경회로망을 이용한 고장표시기의 고장검출 능력 개선에 관한 연구 (A Study on the Improvement of Fault Detection Capability for Fault Indicator using Fuzzy Clustering and Neural Network)

  • 홍대승;임화영
    • 한국지능시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.374-379
    • /
    • 2007
  • 본 논문은 전력계통의 배전계통시스템에서 FRTU(Feeder remote terminal unit)의 고장검출 알고리즘의 개선에 관한 연구이다. FRTU는 상과 지락에 관한 고장검출을 할 수 있다. 특히 고장픽업 기능과 돌입억제기능은 일반적인 부하전류로부터 고장전류를 구별할 수 있다. FRTU는 돌입전류 또는 설정값을 초과한 고장전류가 발생하면 고장표시기(FI)로 고장을 발생한다. 짧은 시간 푸리에 변환(STFT) 분석은 주파수와 시간에 관한 정보론 제공하고, 퍼지 중심 평균 클러스터링(FCM) 알고리즘은 고조파의 특성을 추출한다. 고장 검출기의 신경회로망 시스템은 최급강하법을 이용하여 고장상태로부터 돌입전류를 구별하도록 학습된다. 본 논문에서는 FCM과 신경회로망을 이용하여 고장검출기법을 개선하였다. 검증에 사용된 데이터는 22.9KV 배전계통 시스템에서 실제 측정된 데이터이다.

지능형 차량 번호판 인식 시스템 (Intelligent Recognition System of Car License Plate)

  • 강무진;강혜민;우영운;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.337-342
    • /
    • 2008
  • 최근 들어 기존의 녹색 바탕 차량 번호판에서, 흰색 바탕의 신 차량 번호판으로 교체되고 있다. 하지만 아직 기존 차량 번호판이 신 차량 번호판으로 전면 교체되지 않아 두 번호판 모두 사용되고 있다. 따라서 주차관리 시스템, 속도위반, 신호 위반 등 무인 카메라를 이용한 시스템에서, 기존 차량 번호판과 신 차량 번호판의 특징에 맞는 인식 시스템이 요구된다. 본 논문에서는 이러한 문제를 해결하기 위해 기존 차량 번호판과 신 차량 번호판을 통합한, 지능형 차량 번호판 인식 시스템을 제안한다. 무인 카메라에서 획득된 차량 영상에서 번호판의 색상 정보를 이용하여 기존 차량 번호판과 신 차량 번호판을 구분한다. 기존 차량 번호판인 경우에는 HSI 컬러 공간을 이용하여 이진화를 적용하며, 신 차량 번호판인 경우에는 블록 이진화를 적용한다. 이진화된 영상을 대상으로 차량의 형태학적 특징을 이용하여 잡음을 제거한 후, 차량 번호판 영역을 추출한다. 추출된 차량 번호판 영역에 대해 Labeling 알고리즘을 적용하여 개별 문자를 추출한다. 추출된 개별 문자는 FCM 알고리즘을 적용하여 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 160장의 기존 차량 영상과 100장의 신 차량 영상을 대상으로 실험한 결과, 제안된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.

  • PDF

Fuzzy C-Means클러스터링을 이용한 웹 로그 분석기법 (Web Log Analysis Technique using Fuzzy C-Means Clustering)

  • 김미라;곽미라;조동섭
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.550-552
    • /
    • 2002
  • 플러스터링이란 주어진 데이터 집합의 패턴들을 비슷한 성실을 가지는 그룹으로 나누어 패턴 상호간의 관계를 정립하기 위한 방법론으로, 지금가지 이를 위한 많은 알고리즘들이 개발되어 왔으며, 패턴인식, 영상 처리 등의 여러 공학 분야에 널리 적용되고 있다. FCM(Fuzzy C-Means) 알고리즘은 최소자승 기준함수(least square criterion function)에 퍼지이론을 적용만 목적함수의 반복최적화(iterative optimization)에 기반을 둔 방식으로, 하드 분할에 의한 기존의 클러스터링 방법이 승자(winner take all) 형태의 방법론을 취하는데 비하여, 각 패턴이 특정 클러스터에 속하는 소속정도를 줌으로써 보다 정확한 정보를 형성하도록 도와준다. 본 논문에서는 FCM 기법을 이용한 웹로그 분석을 하고자 한다.

  • PDF

FCM을 이용한 퍼지 RBF 네트워크 (Fuzzy RBF Network using FCM)

  • 김재용;이상수;이준행;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.158-161
    • /
    • 2004
  • RBF 네트워크의 중간층은 클러스터링하는 층이다. 즉, 이 충의 목적은 주어진 자료 집합을 유사한 클러스터들(homogenous cluster)로 분류하는 것이다. 여기서 유사하다는 것은 입력 데이터들에 대한 특징 벡터 공간사이에서 한 클러스터내의 벡터들 간에 거리를 측정하여 정해진 반경 내에 존재하면 같은 클러스터로 분류하고 정해진 반경 내에 존재하지 않으면 다른 클러스터로 분류한다. 그러나 정해진 반경 내에서 클러스터링하는 것은 잘못된 클러스터를 선택하는 단점을 가지게 된다. 그러므로 중간층을 결정하는 .것은 RBF 네트워크의 전반적인 효율성에 큰 영향을 준다. 따라서 본 논문에서는 효율적으로 중간층을 결정하기 위한 방법으로 퍼지 C-Means 클러스터링 알고리즘을 적용한 퍼지 RBF 네트워크를 제안한다. 제안된 퍼지 RBF 네트워크의 학습은 크게 두 단계로 구분된다. 첫 번째 단계는 입력층과 중간층 사이에 퍼지 C-Means 알고리즘이 수행되고, 두 번째 단계는 중간층과 출력층 사이에 지도학습이 수행된다. 제안된 방법의 학습 성능을 평가하기 위하여 실제 주민등록증에서 추출한 숫자패턴에 적용한 결과, 기존의 RBF네트워크 보다 학습 성능이 개선된 것을 확인하였다.

  • PDF

Deformable Template과 GA를 이용한 얼굴 인식 및 아바타 자동 생성 (Face Detection for Automatic Avatar Creation by using Deformable Template and GA)

  • 박태영;권민수;강훈
    • 한국지능시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.110-115
    • /
    • 2005
  • 본 논문에서는 아바타를 자동으로 생성하기 위한 컬러 이미지 상에서의 얼굴, 눈, 입술 윤곽선 검출 기법을 제안하였다. 제안된 기법에서는 먼저 조명의 영향을 최대한 배제하기 위하여 HSI 색상 모델을 사용하였고 I 정보를 제외한 HS 평면상에서 피부색을 정의하고 이를 이용하여 입력된 이미지로부터 피부 영역을 검출하였다. 그리고 변형가능 템플릿과 유전자 알고리즘을 이용하여 얼굴, 눈, 입의 윤곽선을 검출하였다. 여기서 변형가능 템플릿은 B-spline 곡선과 컨트롤 포인트 벡터로 이루어지며, 이것은 다양한 얼굴, 눈, 입술 모양의 표현을 가능하게 한다. 또 유전자 알고리즘은 자연계의 진화와 선택원리를 응용한 매우 효율적인 탐색 알고리즘이다 다음으로, 검출된 얼굴과 각 요소들의 윤곽선과 퍼지 C-평균 군집화를 이용하여 아바타를 생성하게 된다. 퍼지 C-평균 군집화는 얼굴색을 일정한 수로 단순화하는 과정에서 사용하였다. 결과적으로, 이와 같은 기법을 이용하여 기존의 정해진 이미지를 가지고 표현하던 아바타와는 달리 사용자의 특성을 표현할 수 있는 아바타를 자동으로 생성할 수 있다.

CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계 (Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method)

  • 진용탁;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제25권1호
    • /
    • pp.91-96
    • /
    • 2015
  • 본 연구는 조명변화에 강인한 CT 전처리 기법 기반 개선된 얼굴인식 시스템을 소개한다. 전처리 알고리즘으로 CT알고리즘은 조명이 없는 환경에서도 얼굴의 지역적인 특징만을 추출한다. 얼굴의 지역적인 특징 추출을 가능하게 해준다. 처리된 데이터는 $(2D)^2$ 기반 대표적인 차원축소 알고리즘인 PCA를 사용하여 특징을 추출하였다. 전처리 알고리즘을 통한 특징 데이터는 제안한 방사형 기저함수 신경회로망의 입력으로 사용하였다. 방사형 기저함수 신경회로망의 은닉층은 FCM으로 구성하였고, 연결가중치는 1차 선형식을 사용하였다. 또한 ABC 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉 입력의 수, 퍼지 클러스터링의 퍼지화 계수를 최적화 한다. 본 연구는 제안된 시스템의 성능 평가를 위해 Yale Face database B와 CMU PIE database로 실험하였다.

효율적인 실내 측위를 위한 최적화된 KNN/IFCM 알고리즘 (Optimized KNN/IFCM Algorithm for Efficient Indoor Location)

  • 이장재;송익호;김종화;이성로
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.125-133
    • /
    • 2011
  • WLAN 환경하에서 알고리즘 기반의 패턴 매칭을 위해 training 단계에서는 여러 개의 AP에서 신호 잡음비의 특성값을 데이터베이스에 만들어 활용하고 estimation 단계에서는 단말기(MU)의 2차원 좌표값을 단말기로부터 새롭게 얻은 SNR과 데이터베이스에 저장된 fingerprint을 비교함으로써 추정한다. Fingerprinting 방식에서 KNN은 WLAN 기반 실내 측위에 가장 많이 적용되고 있지만 KNN의 성능은 k 개의 이웃 수와 RP의 수에 따라 민감하다. 논문에서는 KNN 성능을 향상시키기 위해 PFCM 군집화를 적용한 KNN과 PFCM을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여 k개의 RP을 선택한 후 선택된 RP의 신호잡음비를 PFCM에 적용하여 k개의 RP를 군집하여 분류한다. 실험 결과에서는 위치 오차가 2m 이내에서 KNN/IFCM 알고리즘이 KNN, KNN/FCM, KNN/PFCM 알고리즘보다 성능이 우수하다.

퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계 (Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA)

  • 김봉연;오성권;김진율
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.56-63
    • /
    • 2016
  • 본 연구에서는 퍼지 RBFNNs과 증분형 주성분 분석법으로 실현된 숫자인식 시스템의 설계를 소개한다. 주성분 분석법은 차원축소를 위해 사용되는 알고리즘으로 학습데이터의 차원 수가 고차원이거나 데이터의 양이 많을 때 특징 추출을 위한 많은 계산 시간을 필요로 한다. 따라서 고차원 데이터의 효율적인 차원축소와 점진적인 학습을 위해 증분형 주성분분석법을 적용하는 방법을 제안한다. 방사형 기저함수 신경회로망의 구조는 조건부, 결론부, 추론부의 3가지 기능적 모듈로서 구분이 가능하다. 조건부에서는 FCM 클러스터링 알고리즘의 도움으로 실현된 퍼지 클러스터링의 사용으로 입력 공간을 분할한다. 또한 가우시안 함수 대신 FCM(Fuzzy C-Means)클러스터링 알고리즘의 멤버쉽 값을 사용함으로써 입력 데이터의 특성을 좀 더 잘 반영할 수 있도록 개선하였으며, 결론부에서 연결가중치는 상수항에서 일차식과 이차식, 그리고 변형된 이차식과 같은 다항식의 형태로 확장하여 사용한다. 실험 결과는 공인 숫자 데이터인 MNIST 필기체 숫자 데이터를 사용하여 제안된 숫자 인식 시스템의 효율성을 다른 연구와의 비교를 통해 입증한다.

퍼지 클러스터링 알고리즘 기반의 라벨 병합을 이용한 이동물체 인식 및 추적 (Recognition and Tracking of Moving Objects Using Label-merge Method Based on Fuzzy Clustering Algorithm)

  • 이성민;성일;주영훈
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.293-300
    • /
    • 2018
  • We propose a moving object extraction and tracking method for improvement of animal identification and tracking technology. First, we propose a method of merging separated moving objects into a moving object by using FCM (Fuzzy C-Means) clustering algorithm to solve the problem of moving object loss caused by moving object extraction process. In addition, we propose a method of extracting data from a moving object and a method of counting moving objects to determine the number of clusters in order to satisfy the conditions for performing FCM clustering algorithm. Then, we propose a method to continuously track merged moving objects. In the proposed method, color histograms are extracted from feature information of each moving object, and the histograms are continuously accumulated so as not to react sensitively to noise or changes, and the average is obtained and stored. Thereafter, when a plurality of moving objects are overlapped and separated, the stored color histogram is compared with each other to correctly recognize each moving object. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

개선된 퍼지 스트레칭 기법과 퍼지 클러스터링 기법을 이용한 초음파 영상에서의 결절종 추출 (Extraction of Ganglion from Ultrasonic Images by Using Enhanced Fuzzy Stretching and Fuzzy Clustering Method)

  • 박재우;박지훈;조재훈;오흥민;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.478-481
    • /
    • 2017
  • 본 논문에서는 기존의 삼각형 타입의 퍼지 스트레칭을 개선한 사다리꼴 형태의 퍼지 스트레칭 기법과 FCM 기반 양자화 기법을 적용하여 결절종을 추출하는 방법을 제안한다. 제안된 결절종 추출방법은 결절종 영역과 그 외의 영역 간의 명암 대비를 강조하기 위해 사다리꼴 형태의 퍼지 스트레칭 기법을 적용한 후에 Monotone Cubic Spline 기법을 적용하여 ROI 영역을 추출한다. 추출된 ROI 영역에 대해 FCM 기반 양자화 기법을 적용하고 양자화된 결과를 이용하여 ROI 영역을 이진화한다. 결절종이 타원 형태와 명암도가 낮은 값을 가진다는 형태학적 특징을 이용하기 위해서 이진화 ROI 영역에 팽창 기법을 적용하여 결절종의 후보 영역을 추출하고 8방향 윤곽선 추적 알고리즘을 적용하여 잡음 영역이 제거한다. 잡음이 제거된 결절종 후보 영역에서 최종 결절종 영역을 추출하기 위해 라벨링 기법을 적용한다. 제안된 결절종 추출 방법의 성능을 분석하기 위해서 20명의 환자를 대상으로 20장을 실험한 결과, 기존의 방법보다 TPR(Ture Positive Rate)이 높게 나타나는 것을 확인하였다.

  • PDF