• Title/Summary/Keyword: FCCL

Search Result 50, Processing Time 0.033 seconds

FPCB Cutting Process using ns and ps Laser (나노초 및 피코초 레이저를 이용한 FPCB의 절단특성 분석)

  • Shin, Dong-Sig;Lee, Jae-Hoon;Sohn, Hyon-Kee;Paik, Byoung-Man
    • Laser Solutions
    • /
    • v.11 no.4
    • /
    • pp.29-34
    • /
    • 2008
  • Ultraviolet laser micromachining has increasingly been applied to the electronics industry where precision machining of high-density, multi-layer, and multi material components is in a strong demand. Due to the ever-decreasing size of electronic products such as cellular phones, MP3 players, digital cameras, etc., flexible printed circuit board (FPCB), multi-layered with polymers and metals, tends to be thicker. In present, multi-layered FPCBs are being mechanically cut with a punching die. The mechanical cutting of FPCBs causes such defects as burr on layer edges, cracks in terminals, delamination and chipping of layers. In this study, the laser cutting mechanism of FPCB was examined to solve problems related to surface debris and short-circuiting that can be caused by the photo-thermal effect. The laser cutting of PI and FCCL, which are base materials of FPCB, was carried out using a pico-second laser(355nm, 532nm) and nano-second UV laser with adjusting variables such as the average/peak power, scanning speed, cycles, gas and materials. Points which special attention should be paid are that a fast scanning speed, low repetition rate and high peak power are required for precision machining.

  • PDF

Transmit-receive Module for Ka-band Seekers using Multi-layered Liquid Crystal Polymer Substrates (다층 액정폴리머 기판을 이용한 Ka대역 탐색기용 송수신 모듈)

  • Choi, Sehwan;Ryu, Jongin;Lee, Jaeyoung;Lee, Jiyeon;Nam, ByungChang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.63-70
    • /
    • 2020
  • In this paper, the transmit-receive module for military seekers has been designed and fabricated in 35 GHz. To increase the performance of substrates and high integration of circuits in millimeter-wave band, a 4-layer LCP(Liquid Crystal Polymer) substrate was developed. This substrate was implemented with three FCCL substrates and two adhesive layers, and a process using the difference in melting point between the substrates was used for lamination. Using a strip line and a microstrip line was confirmed by the transmission loss along the length of the substrate, and the performance of LCP substrates was validated with a power divider in 35 GHz. After confirming the performance of individual blocks such as power amplifier and low noise amplifier, a single channel Ka-band transmission/reception module was developed using a 4-layer liquid crystal polymer substrate. The transmit power of this module has above 1.1W in pulse duty 10% and has an output power of 1.1W and it has receive noise figure less than 8.5 dB and receive gain more than 17.6 dB.

High-Speed Maritime Object Detection Scheme for the Protection of the Aid to Navigation

  • Lee, Hyochan;Song, Hyunhak;Cho, Sungyoon;Kwon, Kiwon;Park, Sunghyun;Im, Taeho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.692-712
    • /
    • 2022
  • Buoys used for Aid to Navigation systems are widely used to guide the sea paths and are powered by batteries, requiring continuous battery replacement. However, since human labor is required to replace the batteries, humans can be exposed to dangerous situation, including even collision with shipping vessels. In addition, Maritime sensors are installed on the route signs, so that these are often damaged by collisions with small and medium-sized ships, resulting in significant financial loss. In order to prevent these accidents, maritime object detection technology is essential to alert ships approaching buoys. Existing studies apply a number of filters to eliminate noise and to detect objects within the sea image. For this process, most studies directly access the pixels and process the images. However, this approach typically takes a long time to process because of its complexity and the requirements of significant amounts of computational power. In an emergent situation, it is important to alarm the vessel's rapid approach to buoys in real time to avoid collisions between vessels and route signs, therefore minimizing computation and speeding up processes are critical operations. Therefore, we propose Fast Connected Component Labeling (FCCL) which can reduce computation to minimize the processing time of filter applications, while maintaining the detection performance of existing methods. The results show that the detection performance of the FCCL is close to 30 FPS - approximately 2-5 times faster, when compared to the existing methods - while the average throughput is the same as existing methods.

고속 스퍼터링 소스를 이용한 구리 후막 제조 및 특성

  • Jeong, Jae-In;Yang, Ji-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.345.1-345.1
    • /
    • 2016
  • 구리 피막은 열 및 전기를 잘 전달하는 특성으로 인해 전기 배선이나 Heat Sink 재료 등에 이용되고 있다. 최근에는 전자파 차폐나 FCCL (Flexible Copper Clad Laminate) 등의 피막으로 널리 이용되면서 연속 코팅 및 후막 제조를 위한 고속 소스의 필요성이 증가하고 있다. 연속코팅 설비에 적용하거나 후막을 경제적으로 제조하기 위해서는 정지상태의 기판을 기준으로 시간당 $100{\mu}m$ 이상의 증착 속도가 요구된다. 기존 마그네트론 스퍼터링 소스의 경우 일반적으로 증착율이 시간당 $20{\mu}m$ 이내이며, 고전력을 이용하는 소스의 경우도 $60{\mu}m$를 넘지 못하고 있다. 본 발표에서는 자기장 시뮬레이션을 통해 자석의 배열을 최적화하고 냉각 효율을 고려한 소스 설계를 통해 고속 스퍼터링 소스를 제작하고 그 특성을 평가하였다. 제작된 소스는 구리 코팅을 위한 스퍼터링 공정 조건을 도출하고 다양한 기판에 $20{\mu}m$ 이상의 구리 후막을 코팅하여 미소 형상 및 코팅 조직을 분석하였다.

  • PDF

나노초 및 피코초 레이저를 이용한 FPCB의 절단특성 분석

  • Sin, Dong-Sik;Lee, Je-Hun;Son, Hyeon-Gi;Baek, Byeong-Man
    • The Optical Journal
    • /
    • s.120
    • /
    • pp.69-73
    • /
    • 2009
  • 본 논문에서는 레이저 가공의 문제점인 FPCB에서의 낮은 생산성과 열영향을 보완하기 위한 실험내용을 다루고 있으며 극초단펄스 레이저와 나노초 UV레이저를 이용하여 FPCB의 기반재료인 FCCL(Flexible Copper Clad Laminate)를 절단하며 생산성 및 열영향을 비교하고 있다. 나노초 레이저는 피코초 레이저 경우에 비해 가공속도가 빨라 양산공정에 적합하며 피코초 레이저는 나노초 레이저에 비해 용융물이 적게 발생하여 다층/고집적화에 적합하나 출력이 낮은 단점이 있어 현단계에서의 양산가공으로의 적용이 어렵다는 결론이다. 그러나 여러 선도 업체에서 극초단 펄스레이저의 고출력화에 대한 시도가 이뤄지고 있으므로 생산성의 문제는 빠른 시일 내에 해결될 것으로 판단된다.

  • PDF

The study of Copper foil surface treatment for Flexible Copper Clad Laminate (FCCL) (플렉시블 동장적층판 개발을 위한 동박표면처리에 관한 연구)

  • Mun Won-Cheol;Lee Chang-Yong;Lee Jae-Hong;Jeong Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.24-26
    • /
    • 2006
  • The copper foil of 10fm of thickness was prepared, and the surface treatment on the copper foil was done by the method of the electrolytic plating in the acid solution with the sulfate ion as a purpose to remove the main element of the surface contaminant of copper variously. The structure on the surface of the copper foil in this study investigated AFM with SEM the changed phenomenon according to added plating time and current. The phenomenon of the structure's of the oxide on the surface of long plating time and high current growing was confirmed.

  • PDF

Technology Trend of Next Gen. PCB/FPCB Copper Foil (차세대 PCB/FPC용 Copper foil 기술 동향)

  • Lee, Seon-Hyeong;Song, Gi-Deok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.158-158
    • /
    • 2015
  • 전해동박(Electrodeposited Copper Foil)은 전기도금 공정으로 제조되는 얇은 구리 포일로서, 주로 TV, PC, 스마트폰 등 전자제품의 인쇄회로기판에서 전기신호를 전달하는 회로소재로 사용이 되며, 최근에는 모바일 IT, 전기자동차, 지능형 로봇, 그린 에너지 산업 등에서 필수적으로 적용되는 소재로 이용이 급증하고 있는 핵심소재이다. 모바일, Network 고속 통신 기술의 발전에 따라 Data 사용량의 폭증으로 고속/고주파 신호전송이 필요성이 증대되고 있으며 무선 충전 기술의 도입 및 웨어러블 기기의 보급으로 점차 FCCL도 3layer에서 2layer로 점차 그 수요가 바뀌어 가고 있다. 이에 따라 전해동박도 고속/고주파 신호 전송 및 고밀도 특성에 맞추어 저조도, 고밀착력 특성을 요구되는 방향으로 개발 되고 있으며 Line Space 가 기존 $25{\mu}m/25{\mu}m$ 패턴에서 $20{\mu}m/20{\mu}m$ 패턴으로 Fine pitch를 요구함에 따라 전해동박의 박막화, 저조도 고 밀착력 특성이 더 요구되고 있다.

  • PDF

Analysis of Surface Characteristics for Clad Thin Film Materials (극박형 복합재료 필름의 표면 물성 분석에 대한 연구)

  • Lee, Jun Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.62-65
    • /
    • 2018
  • In the era of the 4th Industrial Revolution, IoT products of various and specialized fields are being developed and produced. Especially, the generation of the artificial intelligence, robotic technology Multilayer substrates and packaging technologies in the notebook, mobile device, display and semiconductor component industries are demanding the need for flexible materials along with miniaturization and thinning. To do this, this work use FCCL (Flexible Copper Clad Laminate), which is a flexible printed circuit board (PCB), to implement FPCB (Flexible PCB), COF (Chip on Film) Use is known to be essential. In this paper, I propose a transfer device which prevents the occurrence of scratches by analyzing the mechanism of wrinkle and scratch mechanism during the transfer process of thin film material in which the thickness increases while continuously moving in air or solution.

Effect of Diamine Composition on Thermo-Mechanical Properties and Moisture Absorption of Polyimide Films (디아민 변화에 따른 폴리이미드 필름의 물리적 특성과 흡습률 분석)

  • Park, Yun-Jun;Yu, Duk-Man;Choi, Jong-Ho;Ahn, Jeong-Ho;Hong, Young-Taik
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.275-280
    • /
    • 2012
  • Poly(amic acid)s were successfully synthesized from 1,4-bis(4-aminophenoxy)benzene (1,4-APB) or 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane (HFBAPP) with pyromellitic dianhydride (PMDA), 3,3'-4,4'-benzopenonetetracarboxylic dianhydride (BPDA) and $p$-phenylenediamine ($p$-PDA) and then they were effectively converted into polyimide films by thermal imidization. The chemical structure and thermo-mechanical properties of polyimide films were examined using Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analyzer (TGA), thermo-mechanical analyzer, dynamic mechanical analyzer (DMA) and universal tensile machine (UTM). The moisture absorption, thermal and mechanical properties of polyimide films decreased with increasing the amount of 1,4-APB and HFBAPP. The polyimide films using HFBAPP showed lower properties than that of 1,4-APB at the same ratio, but it displayed better thermal properties and lower moisture absorption at the similar coefficient of thermal expansion (CTE) with a copper. On the basis of our finding, it is concluded that 4-component polyimide films could be utilized for base films for flexible copper clad laminates (FCCL) of flexible printed circuit boards.

Flexible Durability of Ultra-Thin FPCB (초박형 FPCB의 유연 내구성 연구)

  • Jung, Hoon-Sun;Eun, Kyoungtae;Lee, Eun-Kyung;Jung, Ki-Young;Choi, Sung-Hoon;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.69-76
    • /
    • 2014
  • In this study, we developed an ultra-thin flexible printed circuit board(FPCB) using the sputtered flexible copper clad laminate. In order to enhance the adhesion between copper and polyimide substrate, a NiMoNb addition layer was applied. The mechanical durability and flexibility of the ultra-thin FPCB were characterized by stretching, twisting, bending fatigue test, and peel test. The stretching test reveals that the ultra-thin FPCB can be stretched up to 7% without failure. The twisting test shows that the ultra-thin FPCB can withstand an angle of up to $120^{\circ}$. In addition, the bending fatigue test shows that the FPCB can withstand 10,000 bending cycles. Numerical analysis of the stress and strain during stretching indicates the strain and the maximum von Mises stress of the ultra-thin FPCB are comparable to those of the conventional FPCB. Even though the ultra-thin FPCB shows slightly lower durability than the conventional FPCB, the ultra-thin FPCB has enough durability and robustness to apply in industry.