• Title/Summary/Keyword: FBAR

Search Result 112, Processing Time 0.026 seconds

Preparation AZO(ZnO:Al) thin film for FBAR by FTS method (대향타겟스퍼터링법에 의한 FBAR용 AZO(ZnO:Al) 전극의 제작)

  • Keum, M.J.;Shin, S.K.;Ga, C.H.;Chu, S.N.;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.172-175
    • /
    • 2003
  • ZnO:Al thin film for application to FBAR's bottom electrode using ZnO piezoelectric thin film were prepared by FTS, in order to improve the crystallographic properties of ZnO thin films because the ZnO:Al thin film and ZnO thin films structure is equal each other. So we prepared the ZnO:Al thin film with oxygen gas flow rate. Thickness and c-axis preferred orientation and electric properties of ZnO:Al bottom electrode were evaluated by $\alpha$-step, XRD and 4-point probe..

  • PDF

A study of air-gap type FBAR device fabrication using ZnO (ZnO를 이용한 air-gap 형태의 FBAR 소자 제작에 대한 연구)

  • Park, Sung-Hyun;Lee, Soon-Beom;Shin, Young-Hwa;Lee, Neung-Heon;Lee, Sang-Hoon;Chu, Soon-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1414-1415
    • /
    • 2006
  • Air-gap type film bulk acoustic wave resonator device using ZnO for piezoelectric layer and sacrifice layer, deposited by RF magnetron sputter with various conditions, fabricated in this study. Also, membrane$(SiO_2)$ and top and bottom electrode(both Al) of piezoelectric layer deposited by RF magnetron sputter. Using micro electro mechanical systems(MEMS) technique, sacrifice layer removed and then air-gap formed. The results of each process checked by XRD, AFM, SEM to obtain good quality device.

  • PDF

The study of ZnO crystalline improvement of FBAR (DC sputter로 증착한 ZnO 박막의 결정성 향상에 관한 연구)

  • Lee, Kyu-Il;Kim, Eung-Kwon;Lee, Tae-Yong;Hwang, Hyun-Suk;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.322-323
    • /
    • 2005
  • We deposited Zinc oxide (ZnO) thin films on Ru buffer layer in order to protect the amorphous layer between ZnO and Al interface. In X-ray diffraction (XRD) pattern, it was observed that increase of (002)-orientation by the variation of annealing treatment temperature. Also, surface roughness and specific resistance were increased by annealing treatment but full width at half maximum (FWHM) was decreased. In film bulk acoustic resonators (FBARs) fabricated from these results, we finally confirmed that the resonant frequency of 0.89 GHz without its shift was measured.

  • PDF

Design of US PCS Duplexer for wireless systems (무선 시스템용 US PCS FBAR Duplexer 설계)

  • Lee, Eun-Kyu;Choi, Hyung-Rim
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.210-211
    • /
    • 2009
  • In this study, we propose characteristics improvement methods according to via hole plating method for FBAR Duplexer with US PCS($T_x$:1850MHz~1910MHz, $R_x$:1930MHz~1990MHz) bandwidth which is used for wireless systems. Also, we designed and fabricated 3.8*3.8*1.8mm size microminiature FBAR Duplexer based on this proposal. First of all, in this study, we fabricated pentagon shape resonators by different size to make filter combination, and their quality factor(Q) are 687 with 6.6% of $k_{eff}^2$. Using this resonators, designed 3*2Type $T_x$ filter and 3*4Type $R_x$ filter. The transmission line, which works as phase shifter, is designed with $210{\mu}m$ in width and 18mm in length Stripline type. Inductor, which is used for matching component, is designed with width of $75{\mu}m$, a technically achievable minimum width. And adopted plating method of filling via hole with conductive epoxy for improved grounding and thermal conductivity. Using these configuration with all of the matching component values, we found Duplexer characteristics of -1.57dB ~ -1.73dB in insertion loss, -56dB in attenuation at 1850MHz~1910MHz of $T_x$ band. Also, found -2.71 dB ~ -3.23dB in insertion loss, -58dB in attenuation at 1930MHz~1990MHz of $R_x$ band.

  • PDF

Resonant Mode Analysis of Microwave Film Bulk Acoustic Wave Resonator using 3D Finite Element Method (3차원 유한 요소법을 이용한 초고주파 압전 박막 공진기의 공진 모드해석)

  • 정재호;송영민;이용현;이정희;고광식;최현철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.18-26
    • /
    • 2001
  • In this paper, the resonant characteristics and modes of the film bulk acoustic wave resonator (FBAR) used in 1~2 GHz frequency region are analyzed by it's input impedance which was calculated by three dimensional finite element method formulated as eigenvalue problem using electro-mechanical wave equation and boundary condition. It was extracted that the resonant and the spurious characteristics considering the effects of electrode area and shape variation and unsymmetry of upper and lower electrode. Those effects couldn't be analyzed by on dimensional analysis, e.g. Mason equivalent model. The simulation result was confirmed by comparing with the simulation data from Mason model analysis and the measured data of the ZnO FBAR fabricated using micro-machining technique. Also, through the simulation of the area variations of FBAR, it was obtained that the optimum ratio of length and thickness is 20:1 and the minimum ratio is 5:1 to operate thickness vibration mode.

  • PDF

Theoretical Analysis of FBARs Filters with Bragg Reflector Layers and Membrane Layer (브래그 반사층 구조와 멤브레인 구조의 체적 탄성파 공진기 필터의 이론적 분석)

  • Jo, Mun-Gi;Yun, Yeong-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.41-54
    • /
    • 2002
  • In this study, we have analyzed the effects of the membrane layer and the bragg reflector layers on the resonance characteristics through comparing the characteristics of the membrane type FBAR (Film Bulk Acoustic Wave Resonator) and the one type bragg reflector layers with those of the ideal FBAR with top and bottom electrode contacting air by using equivalent circuit technique. It is assumed that ZnO is used for piezoelectric film, $SiO_2$ are used for membrane layer and low acoustic impedance layer, W are used for the high acoustic reflector layer and Al is used for the electrode. Each layer is considered to have a acoustic propagation loss. ABCD parameters are picked out and input impedance is calculated by converting 1-port equivalent circuit to simplified equivalent circuit that ABCD parameters are picked out possible. From the variation of resonance frequency due to the change of thickness of electrode layers, reflector layers and membrane layer it is confirmed that membrane layer and the reflector layer just under the electrode have the greatest effect on the variation of resonance frequency. From the variation of resonance properties, K and electrical Q with the number of layers, K is not much affected by the number of layers but electrical Q increases with the number of layers when the number of layers is less than seven. The electrical Q is saturated when the number of layers is large than six. The electrical Q is dependent of mechanical Q of reflector layers and membrane layer. Both ladder filter and SCF (Stacked Crystal Filters) show higher insertion loss and out-of-band rejection with the increase of the number of resonators. The insertion loss decreases with the increase of the number of reflector layers but the bandwidth is not much affected by the number of reflector layers. Ladder Filter and SCF with membrane layer show the spurious response due to spurious resonance properties. Ladder filter shows better skirt-selectivity characteristics in bandwidth but SCF shows better characteristics in insertion loss.

Numerical Analysis of Bragg Reflector Type Film Bulk Acoustic Wave Resonator (수치적 계산을 이용한 Bragg Reflector형 탄성파 공진기의 특성 분석)

  • 김주형;이시형;안진호;주병권;이전국
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.980-986
    • /
    • 2001
  • Bragg reflector type FBAR was fabricated on the Si(100) substrate. We measured a frequency response of the resonator at 5.2 GHz and analyzed it by numerical calculation considering actual acoustic losses of each layer in the structure. We fabricated nine layer Bragg reflector of W-SiO$_2$pairs using r.f. sputtering method and fabricated AlN piezoelectric and Al electrodes using pulsed dc sputtering. The return loss(S$_{11}$) of the fabricated Bragg reflector type FBAR was 12 dB at 5.38 GHz and the series resonance frequency(f$_{s}$) was 5.376 GHz and the parallel resonance frequency(f$_{p}$) was 5.3865 GHz. Effective electro-mechanical coupling constant (K$_{eff{^2}}$) and Quality factors(Q$_{s}$), the Figures of Merit of the resonator, were about 0.48% and 411, respectively. We extracted acoustic parameters of AlN piezoelectric and reflection coefficient of the Bragg reflector by numerical calculation. We could know that material acoustic impedance and wave velocity of AlN piezoelectric decreased for intrinsic value and the electromechanical coupling constant(K$_2$) value was very low owing to the poor quality of the AlN piezoelectric. Reflection coefficient of Bragg reflector was 0.99966 and reflection band was very wide from 2.5 to 9.5 GHz.

  • PDF

Structural and Electrical properties of Piezoelectric ZnO Films Grown by Pulsed Laser Deposition for Film Bulk Acoustic Resonator (마이크로파 통신소자용 ZnO 압전 박막의 구조적 전기적 특성)

  • Kim, Gun-Hee;Kang, Hong-Seong;Ahn, Byung-Du;Lim, Sung-Hoon;Chang, Hyun-Woo;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.41-42
    • /
    • 2005
  • The characteristics of ZnO films are reported depending on different deposition conditions for film bulk acoustic resonators (FBARs). The ZnO films have been deposited on Al films evaporated on p-type (100) silicon substrate by pulsed laser deposition (PLD) technique using a Nd:YAG laser. These films exhibit an electrical resistivity higher than $10^7$ $\Omega$m. X-ray diffraction measurements have shown that ZnO films are highly c-axis oriented with full width at half maximum (FWHM) below $0.5^{\circ}$. These results show the possibility of FBAR devices using by PLD.

  • PDF