• Title/Summary/Keyword: FAO-24

Search Result 73, Processing Time 0.022 seconds

Selection of Irrigation Desgin Year and Compparision of Reference Crop Evapotranspiration at 13 Regions (지역별 관개 계획기준년 선정과 기준작물 잠재증발산량 비교)

  • 김현수
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.93-98
    • /
    • 1999
  • This study is performed to select irrigation design year from 10-year return period 7-month(April to October) precipitation amount and compare reference crop evapotranspiration at 13 regions by REF-ET model. 1. Seven-month growing season average reference crop evapotranspiration values showed low values of 4.1 ∼4.2mm /day by FAO-24 Corrected Penman method, and 3.6 ∼3.7mm/day by FAP-24 Blaney Criddle method in Chinjin and Ulsan, high values of 4.9mm/day by FAO-24 Corrected Penman method , 4.1mm/day by FAO -24 Blaney Criddle method in Mokpo and Pohang. 2. Estimated seven-month growing season average reference crop evapotranspirations are 4.6mm/day by FAO-24 Corrected Penman method, 3.9,mm/day by FAO-24 Balney Criddle method, 4.0mm/day 1985 Hargreaves method, respectively.

  • PDF

Estimation on Trends of Reference Evapotranspiration of Weather Station Using Reference Evapotranspiration Calculator Software (Reference Evapotranspiration Calculator Software를 이용한 기상관측소 기준증발산 추정)

  • Choi, Wonho;Choi, Minha;Oh, Hyunje;Park, Jooyang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.219-231
    • /
    • 2010
  • The Reference Evapotranspiration Calculator Software (REF-ET) supports computational guidelines for the reference evapotranspiration using seventeen FAO Penman-Monteith (PM) equations simultaneously such as the ASCE and FAO standardized forms. The REF-ET can conveniently consider missing data predictions and regional site characterizations, when reference ET is computed on monthly, daily, and hourly time steps. The applicability of the REF-ET was estimated to simulate the reference ET using hourly weather data from Seoul weather station for 29 years. The result found that the FAO24-Rd and 1957-Makk equations closely concerned with solar radiation parameter which were the most highly correlated to reference ET computed by pan coefficient. In addition, the 1957-Makk equation was identified as the most correct computational method for reference ET by analysis of bias and root mean square error. The 1957-Makk equation could predict the reference ET within the error of less than 1.06 mm/day, though all the other equations tended toward overestimation of predicting the reference ET in comparison with refecence ET of pan. The results of this study suggest that the REF-ET will be applicable to support reference ET estimation for a variety of field condition and time-scale.

A Study on Calibration of Tank Model with Soil Moisture Structure (토양수분 저류구조를 가진 탱크모형의 보정에 관한 연구)

  • Kang, Shin-Uk;Lee, Dong-Ryul;Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.133-144
    • /
    • 2004
  • A Tank Model composed of 4 tanks with soil moisture structure was applied to Daecheong Dam and Soyanggang Dam watersheds. Calibration and verification were repeated 332 and 472 times for each watershed using SCE-UA global optimization method for different calibration periods and objective functions. Four different methods of evapotranspiration calculation were used and evaluated. They are pan evaporation, 1963 Penman, FAO-24 Penman-Monteith, and FAO-56 Penman-Monteith methods. Tank model with soil moisture structure showed better results than the standard tank model for daily rainfall-runoff simulation. Two types of objective function for model calibration were found. Proper calibration period are 3 years, in which dry year and flood year are included. If a calibrationperiod has an inadequate runoff rate, the period should be more than 8 years. The four methods of eyapotranspiraton computation showed similar results, but 1963 Penman method was slightly inferior to the other methods.

Development of a surrogate model based on temperature for estimation of evapotranspiration and its use for drought index applicability assessment (증발산 산정을 위한 온도기반의 대체모형 개발 및 가뭄지수 적용성 평가)

  • Kim, Ho-Jun;Kim, Kyoungwook;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.969-983
    • /
    • 2021
  • Evapotranspiration, one of the hydrometeorological components, is considered an important variable for water resource planning and management and is primarily used as input data for hydrological models such as water balance models. The FAO56 PM method has been recommended as a standard approach to estimate the reference evapotranspiration with relatively high accuracy. However, the FAO56 PM method is often challenging to apply because it requires considerable hydrometeorological variables. In this perspective, the Hargreaves equation has been widely adopted to estimate the reference evapotranspiration. In this study, a set of parameters of the Hargreaves equation was calibrated with relatively long-term data within a Bayesian framework. Statistical index (CC, RMSE, IoA) is used to validate the model. RMSE for monthly results reduced from 7.94 ~ 24.91 mm/month to 7.94 ~ 24.91 mm/month for the validation period. The results confirmed that the accuracy was significantly improved compared to the existing Hargreaves equation. Further, the evaporative demand drought index (EDDI) based on the evaporative demand (E0) was proposed. To confirm the effectiveness of the EDDI, this study evaluated the estimated EDDI for the recent drought events from 2014 to 2015 and 2018, along with precipitation and SPI. As a result of the evaluation of the Han-river watershed in 2018, the weekly EDDI increased to more than 2 and it was confirmed that EDDI more effectively detects the onset of drought caused by heatwaves. EDDI can be used as a drought index, particularly for heatwave-driven flash drought monitoring and along with SPI.