• Title/Summary/Keyword: FAME composition

Search Result 20, Processing Time 0.022 seconds

Comparison of Cellular Fatty Acid Composition and Genotypic Analysis of Bifidobacterium longum MK-G7 with Commercial Bifidobacteria Strains

  • Jung, Hoo-Kil;Kim, Eung-Ryool;Ji, Geun-Eog;Park, Jong-Hyun;Cha, Seong-Kwan;Juhn, Suk-Lak
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.143-146
    • /
    • 2000
  • This study was conducted to compare the cellular fatty acid composition and genotypic analysis of Bifidobacterium longum MK-G7 originated from Koreans with other commercial type strains of bifidobacteria. The cellular fatty acid of Bif. longum MK-G7 was shown to be composed of $C_{160FAME},C_{181\;c18DMA},C_{18.1\;CIS9\; FAME},C_{14.0FAME},C_{19\;0cye9,10 DMA},Feature7(C_{17.2 FAME), and Feature 10(C_{181\; Cll/t9/t6 FAME}$. Bif. longum MK-G7 showed 99.9% homology and the highest relatedness with Bif. longum ATCC 15707 type strain. Both Bif. longum MK-G7 and Bif. longum ATCC 15707 showed 153 bp products on RAPD (randomly amplified polymorphic DNA) analysis, however, they showed quite different band patterns on PFGE (pulsed-field gel electrophoresis) analysis. Consequently, our present study showed that Bif. longum MK-G7 was different from any commercial type strains of Bif. longum tested.

  • PDF

Investigation of cultivation and FAME composition isolated Phaeodactylum tricornutum from Youngheung island (영흥도에서 분리된 Phaeodactylum tricornutum의 증식 및 Monounsaturated fatty acid 관련 지방산 조성 분석)

  • Lee, SangMin;Cho, Yonghee;Shin, ong-Woo;Jeon, Hyonam;Ryu, YoungJin;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.47-52
    • /
    • 2014
  • Oxidation stability and cold fuid property are considered as the most important factors for determining biodiesel quality. Among the fatty acids, monounsaturated fatty acid satisfy both oxidation stability and cold flow property of biodiesel quality standards. Microalgae with high monounsaturated fatty acid contents is have some benefit for producing to produce biodiesels with satisfying quality standards. In this study, monounsaturated fatty acid contents of a isolated microalga from Youngheung island was analyzed. Phaeodactylum tricornutum was isolated by streaking, and growth rate and fatty acid composition of the algae were investigated. Total FAME contents were consisted of 26% of saturated fatty acids, 43% of monounsaturated fatty acids, and 18% of polyunsaturated fatty acids. The contents of monounsaturated fatty acid were especially high in the Phaeodactylum species. This result implies that the FAMEs from P. tricornutum may contribute to improve the oxidation stability and cold flow property of biodiesel.

Biodiesel production using lipase producing bacteria isolated from button mushroom bed (양송이 배지에서 유래한 Lipase 생산균을 이용한 바이오디젤 생산)

  • Kim, Heon-Hee;Kim, Chan-Kyum;Han, Chang-Hoon;Lee, Chan-Jung;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • A lipase producing bacterium was isolated from button mushroom bed, which showing high clear zone on agar media containing Tributyrin as the substrate. The strain was identified as Burkholderia cepacia by analysis of 16S rDNA gene sequence. Crude lipase (CL) was partially purified from 70% ammonium sulfate precipitation using the culture filtrate of B. cepacia. Immobilized lipases were prepared by cross-linking method with CL from B. cepacia and Novozyme lipase (NL) onto silanized Silica-gel as support. Residual activitiy of the immobilized CL (ICL) and immobilized NL (INL) was maintained upto 61% and 72%, respectively. Biodiesel (Fatty acid methyl ester, FAME) was recovered by transesterification and methanolysis of Canola oil using NaOH, CL and ICL as the catalysts to compare the composition of fatty acids and the yield of FAME. Total FAME content was NaOH $781mg\;L^{-1}$, CL $681mg\;L^{-1}$ and ICL $596mg\;L^{-1}$, in which the highest levels of FAME was observed to 50% oleic acid (C18:1) and 22% stearic acid (C18:0). In addition, the unsaturated FAME (C18:1, C18:2) decreased, while saturated FAME (C16:0, C18:0) increased according to increasing the reaction times with both CL and ICL, supporting CL possess both transesterification and interesterification activity. When reusability of ICL and INL was estimated by using the continuous reaction of 4 cycles, the activity of ICL and INL was respectively maintained 66% and 79% until the fourth reaction.

Low algal diversity systems are a promising method for biodiesel production in wastewater fed open reactors

  • Bhattacharjee, Meenakshi;Siemann, Evan
    • ALGAE
    • /
    • v.30 no.1
    • /
    • pp.67-79
    • /
    • 2015
  • Planktivorous fish which limit zooplankton grazing have been predicted to increase algal biodiesel production in wastewater fed open reactors. In addition, tanks with higher algal diversity have been predicted to be more stable, more productive, and to more fully remove nutrients from wastewater. To test these predictions, we conducted a 14-week experiment in Houston, TX using twelve 2,270-L open tanks continuously supplied with wastewater. Tanks received algal composition (monocultures or diverse assemblage) and trophic (fish or no fish) treatments in a full-factorial design. Monocultures produced more algal and fatty acid methyl ester (FAME) mass than diverse tanks. More than 80% of lipids were converted to FAME indicating potentially high production for conversion to biodiesel (up to $0.9T\;ha^{-1}y^{-1}$). Prolific algal growth lowered temperature and levels of total dissolved solids in the tanks and increased pH and dissolved oxygen compared to supply water. Algae in the tanks removed 91% of nitrate-N and 53% of phosphorus from wastewater. Monocultures were not invaded by other algal species. Fish did not affect any variables. Our results indicated that algae can be grown in open tank bioreactors using wastewater as a nutrient source. The stable productivity of monocultures suggests that this may be a viable production method to procure algal biomass for biodiesel production.

Use of tar color additives as a light filter to enhance growth and lipid production by the microalga Nannochloropsis gaditana

  • Shin, Won-Sub;Jung, Simon MoonGeun;Cho, Chang-Ho;Woo, Do-Wook;Kim, Woong;Kwon, Jong-Hee
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.205-209
    • /
    • 2018
  • The spectral composition of light can affect the growth and biochemical composition of photosynthetic microalgae. This study examined the use of light filtering through a solution of soluble colored additives, a cost-effective method to alter the light spectrum, on the growth and lipid production of an oleaginous microalga, Nannochloropsis gaditana (N. gaditana). Cells were photoautotrophically cultivated under a white light emitting diode (LED) alone (control) or under a white LED that passed through a solution of red and yellow color additive (4:1 ratio) that blocked light below 600 nm. The specific growth rate was significantly greater under filtered light than white light ($0.2672d^{-1}$ vs. $0.1930d^{-1}$). Growth under filtered light also increased the fatty acid methyl ester (FAME) yield by 22.4% and FAME productivity by 80.0%, relative to the white light control. In addition, the content of saturated fatty acids was greater under filtered light, so the biodiesel products had better stability. These results show that passing white light through an inexpensive color filter can simultaneously enhance cellular growth and lipid productivity of N. gaditana. This approach of optimizing the light spectrum may be applicable to other species of microalgae.

An Overview of Different Techniques on the Microbial Community Structure, and Functional Diversity of Plant Growth Promoting Bacteria

  • Kim, Kiyoon;Islam, Rashedul;Benson, Abitha;Joe, Manoharan Melvin;Denver, Walitang;Chanratan, Mak;Chatterjee, Poulami;Kang, Yeongyeong;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.144-156
    • /
    • 2016
  • Soil is a dynamic biological system, in which it is difficult to determine the composition of microbial communities. Knowledge of microbial diversity and function in soils are limited because of the taxonomic and methodological limitations associated with studying the organisms. In this review, approaches to measure microbial diversity in soil were discussed. Research on soil microbes can be categorized as structural diversity, functional diversity and genetic diversity studies, and these include cultivation based and cultivation independent methods. Cultivation independent technique to evaluate soil structural diversity include different techniques such as Phospholipid Fatty Acids (PLFA) and Fatty Acid Methyl Ester (FAME) analysis. Carbon source utilization pattern of soil microorganisms by Community Level Physiological Profiling (CLPP), catabolic responses by Substrate Induced Respiration technique (SIR) and soil microbial enzyme activities are discussed. Genetic diversity of soil microorganisms using molecular techniques such as 16S rDNA analysis Denaturing Gradient Gel Electrophoresis (DGGE) / Temperature Gradient Gel Electrophoresis (TGGE), Terminal Restriction Fragment Length Polymorphism (T-RFLP), Single Strand Conformation Polymorphism (SSCP), Restriction Fragment Length Polymorphism (RFLP) / Amplified Ribosomal DNA Restriction Analysis (ARDRA) and Ribosomal Intergenic Spacer Analysis (RISA) are also discussed. The chapter ends with a final conclusion on the advantages and disadvantages of different techniques and advances in molecular techniques to study the soil microbial diversity.

Variation of Microbial Communities with Crop Species in Controlled Horticultural Soils of Gyeongnam Province

  • Lee, Young-Han;Lee, Seong-Tae;Kim, Eun-Seok;Cho, Yong-Cho;Ok, Yong Sik;Kim, Min-Keun;Kim, HyeRan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.182-186
    • /
    • 2013
  • In this study, we examined the chemical properties and microbial community characteristics in 25 controlled horticultural soils (CHS) sampled from Gyeongnam Province by fatty acid methyl ester (FAME) method. The electrical conductivity of watermelon CHS was significantly (p < 0.05) higher than those of red pepper CHS, pumpkin CHS, and strawberry CHS. The amounts of total FAMEs, total bacteria, gram-negative bacteria, gram-positive bacteria, and fungi were significantly (p < 0.05) higher in red pepper CHS than those in strawberry CHS and pumpkin CHS. In addition, higher (p < 0.05) ratios of cy19:0 to $18:1{\omega}7c$ were detected in tomato CHS than those in watermelon CHS, pumpkin CHS, and red pepper CHS. This implied that microbial communities of tomato CHS were stressed more than other species of cultivation soils. Actinomycetes community in red pepper CHS was significantly (p < 0.05) higher than those in tomato CHS, strawberry CHS, and watermelon CHS. Differences in soil microbial community composition were highly associated with cultivated crop species which might result from the management inputs such as fertilizer, herbicide, and irrigation.

Component Characteristics of Xanthoceras sorbifolium Seeds for Bioenergy Plant Utilization

  • Lee, Hyunseok;Yi, Jaeseon;An, Chanhoon;Kim, Minsu;Lee, Jeonghoon
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.4
    • /
    • pp.272-279
    • /
    • 2015
  • Xanthoceras sorbifolium is considered as bio-energy crops owing to the high oil content from kernel. This study was performed to analyze calorific value, crude ash content, ultimate ratio, crude lipid and fatty acid composition among seed sources. Calorific values ranged from $4,526.0\;cal\;g^{-1}$ to $7,377.2\;cal\;g^{-1}$ in seeds and kernels showed the highest value. Calorific values and crude ash contents were observed as significant difference among plantations and/or individuals (p>0.05). Kernel from SD-F plantation showed the highest calorific value and lower crude ash content. C content comprised 63.4%, the highest levels was detected from SD-F (64.8%). Crude lipid content in kernel observed as 54.5 g $100\;g^{-1}$ from SD-F. In contrast it was determined the lowest value from LN-JARS as 46.5 g $100\;g^{-1}$. The fatty acid composition of kernel was determined to those of oleic acid (31.3%) and linoleic acid (38.1%) from SD-F and LN-JARS. These results will be offered to useful information for breeding materials selection.

Analysis of Fatty Acid Compositions and Biodiesel Properties of Seeds of Woody Oil Plants in Korea (국내 목본 유지식물 종자의 지방산 조성 및 바이오디젤 특성 분석)

  • Kim, Kwang Soo;Lee, Yong Hwa;Jang, Young Seok;Choi, In Hu
    • Korean Journal of Plant Resources
    • /
    • v.26 no.5
    • /
    • pp.628-635
    • /
    • 2013
  • In order to evaluate their potential as sources of biodiesel, oil content and fatty acid composition of seeds and fatty acid methyl ester (FAME) properties from seven woody oil plants in Korea were analysed. The oil content of seed of all woody plant species ranged from 15.1 (Ligustrum lucidum) to 70.3% (Camellia japonica) by dry weight. Fatty acid composition consisted mainly of oleic acid, linoleic acid, linolenic acid, palmitic acid and stearic acid, with oleic acid being the most abundant. The content of unsaturated fatty acids of all species was higher than saturated fatty acids. Oxidation stability of seed oils of all woody plants ranged from 2.25 to 8.62 hours/$110^{\circ}C$. Fatty acid methyl ester of Styrax japonica has been found to have the highest iodine value, indicating that unsaturated fatty acid content is higher than other seed oils. Cold filter plug point(CFPP) was varied over a wide range from $0^{\circ}C$ to $-13^{\circ}C$. The cold fluidity of FAME of Chionanthus retusa were excellent.

Evaluation of Fatty Acid Composition in Korean Native Chicken Breast Meat

  • Jean Pierre Munyaneza;Eunjin Cho;Minjun Kim;Aera Jang;Hyo Jun Choo;Jun Heon Lee
    • Korean Journal of Poultry Science
    • /
    • v.51 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • This study was conducted to investigate the composition of the fatty acids in the breast meat of Red-brown Korean native chickens (KNC-R). This study used a total sample of three hundred eighty-two KNC-R (males: 190, females: 192). We used the fatty acid methyl ester (FAME) method to extract the fatty acids. A 2-way ANOVA of the R program was used to assess the effects of batch and sex on each fatty acid trait. Analysis of the fatty acid in the sampled population showed that the predominant fatty acid was oleic acid (C18:1; 28.252%) which is monounsaturated fatty acid (MUFA), followed by palmitic acid (C16:0; 20.895%), saturated fatty acid (SFA), and two omega-6 polyunsaturated fatty acid (PUFAs): linoleic (C18:2; 15.975%), and arachidonic (C20:4; 10.541%). Indices used to evaluate the nutritional quality of fat in the diet: ratio between PUFAs and SFAs (P/S), thrombogenicity index (TI), and atherogenicity index (AI) were calculated and were 0.959, 0.814, and 0.355, respectively. Currently, meat consumers need healthier fatty acids. Therefore, information on the content of fatty acid in chicken meat is very important for meat consumers in choosing the type of the meat to be consumed.