• 제목/요약/키워드: FAILURE

Search Result 22,562, Processing Time 0.043 seconds

Dominant failure modes identification and structural system reliability analysis for a long-span arch bridge

  • Gao, Xin;Li, Shunlong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.799-808
    • /
    • 2017
  • Failure of a redundant long-span bridge is often described by innumerable failure modes, which make the structural system reliability analysis become a computationally intractable work. In this paper, an innovative procedure is proposed to efficiently identify the dominant failure modes and quantify the structural reliability for a long-span bridge system. The procedure is programmed by ANSYS and MATLAB. Considering the correlation between failure paths, a new branch and bound operation criteria is applied to the traditional stage critical strength branch and bound algorithm. Computational effort can be saved by ignoring the redundant failure paths as early as possible. The reliability of dominant failure mode is computed by FORM, since the limit state function of failure mode can be expressed by the final stage critical strength. PNET method and FORM for system are suggested to be the suitable calculation method for the bridge system reliability. By applying the procedure to a CFST arch bridge, the proposed method is demonstrated suitable to the system reliability analysis for long-span bridge structure.

Numerical Analysis on Progressive Failure of Plane Slopes (평면 사면의 점진적 파괴에 관한 수치해석)

  • 송원경;권광수
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.31-38
    • /
    • 1997
  • Residual shear strength should be taken into consideration as well as peak one when analysing stability of slopes constituted by weathered rock or overconsolidated soils since such materials could be subjected to progressive failure mechanism. When landslide of a slope is related to progressive failure phenomenon, the failure might occur even though shear strength of the slope materials does not reach their residual shear strength over the whole slip surface. Therefore, stability of the slope concerned may be overstimated or underestimated when using only its peak or residual shear srength parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In this study, his theory has been extended to estimate the distance of failed zone for a plane slope and the results calculated by this extended equatio has been compared with that obtained by numerical modelling using FLAC. In addition, stress state on the slip surface has been, in detail, analysed to understand failure mechanism when a limited progressive failure occurs. Effects of mechanical and hydraulic factors on progressive failure have also been analysed.

  • PDF

Debonding failure analysis of prestressed FRP strengthened RC beams

  • Hoque, Nusrat;Jumaat, Mohd Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.543-555
    • /
    • 2018
  • Fiber Reinforced Polymer (FRP), which has a high strength to weight ratio, are now regularly used for strengthening of deficient reinforced concrete (RC) structures. While various researches have been conducted on FRP strengthening, an area that still requires attention is predicting the debonding failure load of prestressed FRP strengthened RC beams. Application of prestressing increases the capacity and reduces the premature failure of the beams largely, though not entirely. Few analytical methods are available to predict the failure loads under flexure failure. With this paucity, this research proposes a method for predicting debonding failure induced by intermediate crack (IC) for prestressed FRP-strengthened beams. The method consists of a numerical study on beams retrofitted with prestressed FRP in the tension side of the beam. The method applies modified Branson moment-curvature analysis together with the global energy balance approach in combination with fracture mechanics criteria to predict failure load for complicated IC-induced failure. The numerically simulated results were compared with published experimental data and the average of theoretical to experimental debonding failure load is found to be 0.93 with a standard deviation of 0.09.

Factors Affecting Adherence to Self-care Behaviors among Outpatients with Heart Failure in Korea

  • Ok, Jong Sun;Choi, Heejung
    • Korean Journal of Adult Nursing
    • /
    • v.27 no.2
    • /
    • pp.242-250
    • /
    • 2015
  • Purpose: To evaluate heart failure knowledge and adherence to self-care behaviors, and to identify factors affecting adherence to self-care behaviors among Korean patients with heart failure. Methods: Correlational research using the European Heart Failure Self-care Behavior Scale, the Duke Activity Status Index, the Dutch Heart Failure Knowledge Scale, the New York Heart Association Functional Classification, and the Medical Outcomes Study Social Support Survey was conducted. A total of 280 outpatients with heart failure responded to the five questionnaires. Results: The mean scores for self-care adherence and heart failure knowledge were $31.98{\pm}6.81$ and $8.78{\pm}2.53$, respectively, indicating lower adherence and knowledge than those previously reported. Subjects with lower functional status, more social supports, and greater knowledge of heart failure are more likely to adhere to prescribed regimens. Conclusion: Nurses should focus on patient education and support to improve their adherence to self-care behaviors.

Failure Prediction of Composite Single Lap Bonded Joints (복합재료 Single Lap 접합 조인트의 파손 예측)

  • Kim Kwang-Soo;Jang Young-Soon;Yi Yeong-Moo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.73-77
    • /
    • 2004
  • Failure predictions of composite single-lap bonded joints were performed considering both of composite adherend failure and bondline failure. An elastic-perfectly plastic model of adhesive and a delamination failure criterion are used. The failure prediction results such as failure mode and strength have very good agreements with the test results of joint specimens with various bonding methods and parameters. The influence of variations in the effective strength (that is, adhesion performance) and plastic behavior of adhesive on the failure characteristics of composite bonded joints are investigated numerically. The numerical results show that optimal joint strength is archived when adhesive and delamination failure occur in the same time.

  • PDF

Fault Diagnosis of Screw type Air Compressor (스크루형 공기압축기의 고장진단)

  • Bae Yong-hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1092-1100
    • /
    • 2004
  • This paper describes the application of fault tree technique to analyze of compressor failure. Fault tree analysis technique involves the decomposition of a system into the specific form of fault tree where certain basic events lead to a specified top event which signifies the total failure of the system. In this research. fault trees for failure analysis of screw type air compressor are made. This fault trees are used to obtain minimal cut sets from system failure and system failure rate for the top event occurrence can be calculated. It is Possible to estimate air compressor reliability by using constructed fault trees through compressor failure example. It is Proved that FTA is efficient to investigate the compressor failure modes and diagnose system.

Development of Failure Pressure Evaluation Model for Local Wall-Thinned Elbows Based on Finite Element Analysis (유한요소해석에 기초한 감육곡관 손상압력 평가 모델 개발)

  • Kim, Jin-Weon;Park, Jong-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1063-1071
    • /
    • 2008
  • This paper provides a failure pressure evaluation model for local wall-thinned elbows. In this study, parametric finite element analyses are performed on the elbows containing local wall-thinning defect at their intrados and extrados, and the failure pressures are obtained from the analysis results by applying a local failure criterion that was validated by real-scale pipe tests. An evaluation model including the effects of thinning depth, length, circumferential angle, thinning location, and elbow geometries on the failure pressure is derived based on the evaluated failure pressures. The proposed model agrees well with the results of finite element analyses and reasonably estimates the dependence of failure pressure on the wall-thinning dimensions and elbow geometries. Also, the comparison with experimental data demonstrates that the proposed evaluation model can accurately predict the failure pressure of local wall-thinned elbows.

Reoperation for prosthetic valve failure -clinical analysis of 15 cases- (인공심방판막실패에 대한 임상적 고찰)

  • 권오춘
    • Journal of Chest Surgery
    • /
    • v.19 no.4
    • /
    • pp.584-594
    • /
    • 1986
  • Despite the multivariate improvements in tissue treatment, material, and design of prosthetic heart valves in recent years, numerous complications that may lead to valve dysfunction remain a constant threat after valve replacement. Most common indications for prosthetic valve failure are primary valve failure, infective endocarditis, paravalvular leakage, and thromboembolism. From 1977 to 1986, 15 patients underwent reoperation for prosthetic valve failure in 278 cases of valve surgery. The etiology of prosthetic valve failure were primary valve failure in 12 patients [80 %], infective endocarditis in 2 patients [13.3 %], and a paravalvular leakage [6.7 %]. The average durations of implantation were 45.5 months; 53.9 months in primary valve failure, 16 months in infective endocarditis, and 4 months in paravalvular leakage. The rate of valve failure was high under age of 30 [11/15]. Calcifications and collagen disruption of prosthesis were main cause of primary valve failure in macro- & micropathology. Prosthesis used in reoperation were 5 tissue valves and 10 mechanical valves. Operative mortality were 13.3 % [2/15], due to intractable endocarditis and ventricular arrhythmia.

  • PDF

The possibility of failure of system component by fuzzy sets (Fuzzy Sets을 이용한 시스템 부품의 고장가능성 진단에 관한 모델)

  • Kim, Gil-Dong;Jo, Am
    • Journal of Korean Society for Quality Management
    • /
    • v.20 no.2
    • /
    • pp.44-54
    • /
    • 1992
  • In conventional fault-tree analysis, the failure probabilities of components of a system are treated as exact values in estimating the failure probability of the top event. For the plant layout and systems of the products, however, it is often difficult to evaluate the failure probabilities of components from past occurences, because the environments of the systems change. Furthermore, it might be necessary to consider possible failure of components of the systems even if they have never failed before. In the paper, instead of the probability of failure, we propose the possibility of failure, viz, a fuzzy set defined in probability space. Thus, in this paper based on a fuzzy fault-tree model, the maximum possibility of system failure is determined from the possibility of failure of each component within the system according to the extension principle.

  • PDF

Reliability-Based Optimum Design for Tubular Frame Structures (골조 파이프 구조물의 최적신뢰성 설계)

  • 백점기
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.95-105
    • /
    • 1988
  • This paper describes the development of a reliability-based optimum design technique for such three dimensional tubular frames as off shore structures. The objective function is formulated for the structural weight. Constraints that probability of failure for the critical sections does not exceed the allowable probability of failure are set up. In the evaluation of the probability of failure, fatigue as well as buckling and plasticity failure are taken into account and the mean-value first-order second-moment method(MVFOSM) is applied for its calculation. In order to reduce the computing time required for the repeated structural analysis in the optimization process, reanalysis method is also applied. Application to two and three dimensional simple frame structures is performed. The influence of material properties, external forces, allowable failure probabilities and interaction between external forces on the optimum design is investigated.

  • PDF