• Title/Summary/Keyword: FACE method

Search Result 3,422, Processing Time 0.034 seconds

3D Face Modeling based on 3D Morphable Shape Model (3D 변형가능 형상 모델 기반 3D 얼굴 모델링)

  • Jang, Yong-Suk;Kim, Boo-Gyoun;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.212-227
    • /
    • 2008
  • Since 3D face can be rotated freely in 3D space and illumination effects can be modeled properly, 3D face modeling Is more precise and realistic in face pose, illumination, and expression than 2D face modeling. Thus, 3D modeling is necessitated much in face recognition, game, avatar, and etc. In this paper, we propose a 3D face modeling method based on 3D morphable shape modeling. The proposed 3D modeling method first constructs a 3D morphable shape model out of 3D face scan data obtained using a 3D scanner Next, the proposed method extracts and matches feature points of the face from 2D image sequence containing a face to be modeled, and then estimates 3D vertex coordinates of the feature points using a factorization based SfM technique. Then, the proposed method obtains a 3D shape model of the face to be modeled by fitting the 3D vertices to the constructed 3D morphable shape model. Also, the proposed method makes a cylindrical texture map using 2D face image sequence. Finally, the proposed method builds a 3D face model by rendering the 3D face shape model with the cylindrical texture map. Through building processes of 3D face model by the proposed method, it is shown that the proposed method is relatively easy, fast and precise than the previous 3D face model methods.

Tracking by Detection of Multiple Faces using SSD and CNN Features

  • Tai, Do Nhu;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop;Oh, A-Ran
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.61-69
    • /
    • 2018
  • Multi-tracking of general objects and specific faces is an important topic in the field of computer vision applicable to many branches of industry such as biometrics, security, etc. The rapid development of deep neural networks has resulted in a dramatic improvement in face recognition and object detection problems, which helps improve the multiple-face tracking techniques exploiting the tracking-by-detection method. Our proposed method uses face detection trained with a head dataset to resolve the face deformation problem in the tracking process. Further, we use robust face features extracted from the deep face recognition network to match the tracklets with tracking faces using Hungarian matching method. We achieved promising results regarding the usage of deep face features and head detection in a face tracking benchmark.

Prediction of Cutting Temperature at High Speed Steel in Orthogonal Turning based on Finite Element Method (2차원 선삭시 유한요소법에 의한 고속도강공구의 절삭온도 예측)

  • Jun, Tae-Ok;Bae, Choon-Eek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.102-112
    • /
    • 1995
  • Temperature distribution on the rake face and flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junction imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on both the rake face and flank face of cutting tool with high speed steel. The analytical results show that the temperature on the top flank face of a tool is higher than it on the top rake face of the tool because of the difference of the friction velocity on each face of the tool.

  • PDF

Adaptive Face Region Detection and Real-Time Face Identification Algorithm Based on Face Feature Evaluation Function (적응적 얼굴검출 및 얼굴 특징자 평가함수를 사용한 실시간 얼굴인식 알고리즘)

  • 이응주;김정훈;김지홍
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.2
    • /
    • pp.156-163
    • /
    • 2004
  • In this paper, we propose an adaptive face region detection and real-time face identification algorithm using face feature evaluation function. The proposed algorithm can detect exact face region adaptively by using skin color information for races as well as intensity and elliptical masking method. And also, it improves face recognition efficiency using geometrical face feature and geometric evaluation function between features. The proposed algorithm can be used for the development of biometric and security system areas. In the experiment, the superiority of the proposed method has been tested using real image, the proposed algorithm shows more improved recognition efficiency as well as face region detection efficiency than conventional method.

  • PDF

Face Feature Selection and Face Recognition using GroupMutual-Boost (GroupMutual-Boost를 이용한 얼굴특징 선택 및 얼굴 인식)

  • Choi, Hak-Jin;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.13-20
    • /
    • 2011
  • The face recognition has been used in a variety fields, such as identification and security. The procedure of the face recognition is as follows; extracting face features of face images, learning the extracted face features, and selecting some features among all extracted face features. The selected features have discrimination and are used for face recognition. However, there are numerous face features extracted from face images. If a face recognition system uses all extracted features, a high computing time is required for learning face features and the efficiency of computing resources decreases. To solve this problem, many researchers have proposed various Boosting methods, which improve the performance of learning algorithms. Mutual-Boost is the typical Boosting method and efficiently selects face features by using mutual information between two features. In this paper, we propose a GroupMutual-Boost method for improving Mutual-Boost. Our proposed method can shorten the time required for learning and recognizing face features and use computing resources more effectively since the method does not learn individual features but a feature group.

Face Detection Using Multi-level Features for Privacy Protection in Large-scale Surveillance Video (대규모 비디오 감시 환경에서 프라이버시 보호를 위한 다중 레벨 특징 기반 얼굴검출 방법에 관한 연구)

  • Lee, Seung Ho;Moon, Jung Ik;Kim, Hyung-Il;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1268-1280
    • /
    • 2015
  • In video surveillance system, the exposure of a person's face is a serious threat to personal privacy. To protect the personal privacy in large amount of videos, an automatic face detection method is required to locate and mask the person's face. However, in real-world surveillance videos, the effectiveness of existing face detection methods could deteriorate due to large variations in facial appearance (e.g., facial pose, illumination etc.) or degraded face (e.g., occluded face, low-resolution face etc.). This paper proposes a new face detection method based on multi-level facial features. In a video frame, different kinds of spatial features are independently extracted, and analyzed, which could complement each other in the aforementioned challenges. Temporal domain analysis is also exploited to consolidate the proposed method. Experimental results show that, compared to competing methods, the proposed method is able to achieve very high recall rates while maintaining acceptable precision rates.

A Robust Method for Partially Occluded Face Recognition

  • Xu, Wenkai;Lee, Suk-Hwan;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2667-2682
    • /
    • 2015
  • Due to the wide application of face recognition (FR) in information security, surveillance, access control and others, it has received significantly increased attention from both the academic and industrial communities during the past several decades. However, partial face occlusion is one of the most challenging problems in face recognition issue. In this paper, a novel method based on linear regression-based classification (LRC) algorithm is proposed to address this problem. After all images are downsampled and divided into several blocks, we exploit the evaluator of each block to determine the clear blocks of the test face image by using linear regression technique. Then, the remained uncontaminated blocks are utilized to partial occluded face recognition issue. Furthermore, an improved Distance-based Evidence Fusion approach is proposed to decide in favor of the class with average value of corresponding minimum distance. Since this occlusion removing process uses a simple linear regression approach, the completely computational cost approximately equals to LRC and much lower than sparse representation-based classification (SRC) and extended-SRC (eSRC). Based on the experimental results on both AR face database and extended Yale B face database, it demonstrates the effectiveness of the proposed method on issue of partial occluded face recognition and the performance is satisfactory. Through the comparison with the conventional methods (eigenface+NN, fisherfaces+NN) and the state-of-the-art methods (LRC, SRC and eSRC), the proposed method shows better performance and robustness.

Face recognition rate comparison using Principal Component Analysis in Wavelet compression image (Wavelet 압축 영상에서 PCA를 이용한 얼굴 인식률 비교)

  • 박장한;남궁재찬
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.5
    • /
    • pp.33-40
    • /
    • 2004
  • In this paper, we constructs face database by using wavelet comparison, and compare face recognition rate by using principle component analysis (Principal Component Analysis : PCA) algorithm. General face recognition method constructs database, and do face recognition by using normalized size. Proposed method changes image of normalized size (92${\times}$112) to 1 step, 2 step, 3 steps to wavelet compression and construct database. Input image did compression by wavelet and a face recognition experiment by PCA algorithm. As well as method that is proposed through an experiment reduces existing face image's information, the processing speed improved. Also, original image of proposed method showed recognition rate about 99.05%, 1 step 99.05%, 2 step 98.93%, 3 steps 98.54%, and showed that is possible to do face recognition constructing face database of large quantity.

A Fast and Accurate Face Detection and Tracking Method by using Depth Information (깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법)

  • Bae, Yun-Jin;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.586-599
    • /
    • 2012
  • This paper proposes a fast face detection and tracking method which uses depth images as well as RGB images. It consists of the face detection procedure and the face tracking procedure. The face detection method basically uses an existing method, Adaboost, but it reduces the size of the search area by using the depth image. The proposed face tracking method uses a template matching technique and incorporates an early-termination scheme to reduce the execution time further. The results from implementing and experimenting the proposed methods showed that the proposed face detection method takes only about 39% of the execution time of the existing method. The proposed tracking method takes only 2.48ms per frame with $640{\times}480$ resolution. For the exactness, the proposed detection method showed a little lower in detection ratio but in the error ratio, which is for the cases when a detected one as a face is not really a face, the proposed method showed only about 38% of that of the previous method. The proposed face tracking method turned out to have a trade-off relationship between the execution time and the exactness. In all the cases except a special one, the tracking error ratio is as low as about 1%. Therefore, we expect the proposed face detection and tracking methods can be used individually or in combined for many applications that need fast execution and exact detection or tracking.

A Study On Face Feature Points Using Active Discrete Wavelet Transform (Active Discrete Wavelet Transform를 이용한 얼굴 특징 점 추출)

  • Chun, Soon-Yong;Zijing, Qian;Ji, Un-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.7-16
    • /
    • 2010
  • Face recognition of face images is an active subject in the area of computer pattern recognition, which has a wide range of potential. Automatic extraction of face image of the feature points is an important step during automatic face recognition. Whether correctly extract the facial feature has a direct influence to the face recognition. In this paper, a new method of facial feature extraction based on Discrete Wavelet Transform is proposed. Firstly, get the face image by using PC Camera. Secondly, decompose the face image using discrete wavelet transform. Finally, we use the horizontal direction, vertical direction projection method to extract the features of human face. According to the results of the features of human face, we can achieve face recognition. The result show that this method could extract feature points of human face quickly and accurately. This system not only can detect the face feature points with great accuracy, but also more robust than the tradition method to locate facial feature image.