• Title/Summary/Keyword: FACE

Search Result 11,875, Processing Time 0.041 seconds

Using Spatial Pyramid Based Local Descriptor for Face Recognition (공간 계층적 구조 기반 지역 기술자 활용 얼굴인식 기술)

  • Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.758-768
    • /
    • 2017
  • In this paper, we present a novel method to extract face representation based on multi-resolution spatial pyramid. In our method, a face is subdivided into increasingly finer sub-regions (local regions) and represented at multiple levels of histogram representations. To cope with misaligned problem, patch-based local descriptor extraction has been also developed in a novel way. To preserve multiple levels of detail in local characteristics and also encode holistic spatial configuration, histograms from all levels of spatial pyramid are integrated by using dimensionality reduction and feature combination, leading to our spatial-pyramid face feature representation. We incorporate our proposed face features into general face recognition pipeline and achieve state-of-the-art results on challenging face recognition problems.

Basic Implementation of Multi Input CNN for Face Recognition (얼굴인식을 위한 다중입력 CNN의 기본 구현)

  • Cheema, Usman;Moon, Seungbin
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.1002-1003
    • /
    • 2019
  • Face recognition is an extensively researched area of computer vision. Visible, infrared, thermal, and 3D modalities have been used against various challenges of face recognition such as illumination, pose, expression, partial information, and disguise. In this paper we present a multi-modal approach to face recognition using convolutional neural networks. We use visible and thermal face images as two separate inputs to a multi-input deep learning network for face recognition. The experiments are performed on IRIS visible and thermal face database and high face verification rates are achieved.

Automatic face detection using chromaticity space and deformable templates

  • Lee, Kwansu;Lee, Sung-Oh;Lee, Byung-Ju;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.28.1-28
    • /
    • 2001
  • An automatic face recognition(AFR) of individuals is a significant problem in the development of computer vision. An AFR consists of two major parts which are detection of face region and recognition process, and the overall performance of AFR is determined by each. In this paper, the face region is acquired using chromaticity space, but this face region is a simple rectangle which doesn´t consider the shape information. By applying deformable templates to the face region, we can locate the position of the eyes in images. With the face region and the eye location information, more precise face region can be extract from the image. Because processing time is critical in real-time system, we use simplified eye templates and the modified energy function for the efficiency. We can get a good detection performance in experiments.

  • PDF

A Search Model Using Time Interval Variation to Identify Face Recognition Results

  • Choi, Yun-seok;Lee, Wan Yeon
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.64-71
    • /
    • 2022
  • Various types of attendance management systems are being introduced in a remote working environment and research on using face recognition is in progress. To ensure accurate worker's attendance, a face recognition-based attendance management system must analyze every frame of video, but face recognition is a heavy task, the number of the task should be minimized without affecting accuracy. In this paper, we proposed a search model using time interval variation to minimize the number of face recognition task of recorded videos for attendance management system. The proposed model performs face recognition by changing the interval of the frame identification time when there is no change in the attendance status for a certain period. When a change in the face recognition status occurs, it moves in the reverse direction and performs frame checks to more accurate attendance time checking. The implementation of proposed model performed at least 4.5 times faster than all frame identification and showed at least 97% accuracy.

Real-Time Arbitrary Face Swapping System For Video Influencers Utilizing Arbitrary Generated Face Image Selection

  • Jihyeon Lee;Seunghoo Lee;Hongju Nam;Suk-Ho Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.31-38
    • /
    • 2023
  • This paper introduces a real-time face swapping system that enables video influencers to swap their faces with arbitrary generated face images of their choice. The system is implemented as a Django-based server that uses a REST request to communicate with the generative model,specifically the pretrained stable diffusion model. Once generated, the generated image is displayed on the front page so that the influencer can decide whether to use the generated face or not, by clicking on the accept button on the front page. If they choose to use it, both their face and the generated face are sent to the landmark extraction module to extract the landmarks, which are then used to swap the faces. To minimize the fluctuation of landmarks over time that can cause instability or jitter in the output, a temporal filtering step is added. Furthermore, to increase the processing speed the system works on a reduced set of the extracted landmarks.

Comparison and Analysis of Women Faces in 20s' and Women Faces in 60s Through Women faces's Measured value (여성 얼굴의 측정치를 통한 20대와 60대의 비교 분석)

  • Kim, Ae-Kyung;Lee, Kyung-Hee
    • Science of Emotion and Sensibility
    • /
    • v.13 no.3
    • /
    • pp.485-492
    • /
    • 2010
  • This thesis analyzes the proportion and disproportion of faces through visual analysis and measured value for women faces in 20s and 60s.. The proportion of bizygion breadth and face height is 1 : 1.34 in 20s and 1 : 1.39 in 60s which shows face height is ling in 60s, and 0.85 : 1 : 1 for upper face length, middle face length and lower face length in 20s which shows the proportion of upper face length and lower face length are long while they are 0.84 : 1 : 1.06 in 60s which shows lower face length is long and upper face length is short. If the proportion of the face is more than $2^{\circ}$ which is severe imbalance, angle of eyes is 8% in 20s, 13% in 60s, and angle of nasal is 11% in 20s, 29% in 60s, angle of mouse is 11% in 20s and 40% in 60s, showing imbalance of 60s is severe. As above, It shows that face height is longer in 60s than in 20s and lower face is long among others because face's change due to aging. Also, We able to know that face's imbalance is severer in 60s than in 20s.

  • PDF

3D Face Modeling based on 3D Morphable Shape Model (3D 변형가능 형상 모델 기반 3D 얼굴 모델링)

  • Jang, Yong-Suk;Kim, Boo-Gyoun;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.212-227
    • /
    • 2008
  • Since 3D face can be rotated freely in 3D space and illumination effects can be modeled properly, 3D face modeling Is more precise and realistic in face pose, illumination, and expression than 2D face modeling. Thus, 3D modeling is necessitated much in face recognition, game, avatar, and etc. In this paper, we propose a 3D face modeling method based on 3D morphable shape modeling. The proposed 3D modeling method first constructs a 3D morphable shape model out of 3D face scan data obtained using a 3D scanner Next, the proposed method extracts and matches feature points of the face from 2D image sequence containing a face to be modeled, and then estimates 3D vertex coordinates of the feature points using a factorization based SfM technique. Then, the proposed method obtains a 3D shape model of the face to be modeled by fitting the 3D vertices to the constructed 3D morphable shape model. Also, the proposed method makes a cylindrical texture map using 2D face image sequence. Finally, the proposed method builds a 3D face model by rendering the 3D face shape model with the cylindrical texture map. Through building processes of 3D face model by the proposed method, it is shown that the proposed method is relatively easy, fast and precise than the previous 3D face model methods.

Effects of Stiffness of Face Supporting Zone on Face Slab Behaviors of CFRD (CFRD 차수벽지지죤 강성이 콘크리트차수벽 거동에 미치는 영향)

  • Ha, Ik Soo;Seo, Min Woo;Kim, Hyoung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.351-358
    • /
    • 2006
  • The purpose of this study is to recommend the simulation method and procedure of behaviors of CFRD(Concrete Faced Rockfill Dam) concrete face slab with impoundment by centrifuge tests, to examine the effects of the flexural rigidity of the concrete face slab on the face slab deformation from the centrifuge tests, and to evaluate the effects of the stiffness of face supporting zone on the displacement and moment of face slab by numerical analysis which is verified by the centrifuge tests. In this study, the centrifuge tests on the two model dams with the concrete face slab of different flexural rigidity were carried out. Also, the centrifuge tests were simulated by numerical analysis of which input material properties were obtained by the triaxial tests on the model materials. The validity of numerical analysis was evaluated by comparison between the results of centrifuge tests and numerical simulation. The deformation pattern of the concrete face slab was examined with the various stiffness of the face supporting zone by numerical analysis. From the results of centrifuge tests, the effects of face slab thickness on the deformation of face slab were negligible. From the results of centrifuge tests and numerical analysis, it was found that the amplitude of the maximum displacement of face slab and the position where the maximum displacement was mobilized with impoundment were affected by the stiffness of face supporting zone rather than the flexural rigidity of concrete face slab.

Implementation for Hardware IP of Real-time Face Detection System (실시간 얼굴 검출 시스템의 하드웨어 IP 구현)

  • Jang, Jun-Young;Yook, Ji-Hong;Jo, Ho-Sang;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2365-2373
    • /
    • 2011
  • This paper propose the hardware IP of real-time face detection system for mobile devices and digital cameras required for high speed, smaller size and lower power. The proposed face detection system is robust against illumination changes, face size, and various face angles as the main cause of the face detection performance. Input image is transformed to LBP(Local Binary Pattern) image to obtain face characteristics robust against illumination changes, and detected the face using face feature data that was adopted to learn and generate in the various face angles using the Adaboost algorithm. The proposed face detection system can be detected maximum 36 faces at the input image size of QVGA($320{\times}240$), and designed by Verilog-HDL. Also, it was verified hardware implementation by using Virtex5 XC5VLX330 FPGA board and HD CMOS image sensor(CIS) for FPGA verification.

Comparison of Computer and Human Face Recognition According to Facial Components

  • Nam, Hyun-Ha;Kang, Byung-Jun;Park, Kang-Ryoung
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • Face recognition is a biometric technology used to identify individuals based on facial feature information. Previous studies of face recognition used features including the eye, mouth and nose; however, there have been few studies on the effects of using other facial components, such as the eyebrows and chin, on recognition performance. We measured the recognition accuracy affected by these facial components, and compared the differences between computer-based and human-based facial recognition methods. This research is novel in the following four ways compared to previous works. First, we measured the effect of components such as the eyebrows and chin. And the accuracy of computer-based face recognition was compared to human-based face recognition according to facial components. Second, for computer-based recognition, facial components were automatically detected using the Adaboost algorithm and active appearance model (AAM), and user authentication was achieved with the face recognition algorithm based on principal component analysis (PCA). Third, we experimentally proved that the number of facial features (when including eyebrows, eye, nose, mouth, and chin) had a greater impact on the accuracy of human-based face recognition, but consistent inclusion of some feature such as chin area had more influence on the accuracy of computer-based face recognition because a computer uses the pixel values of facial images in classifying faces. Fourth, we experimentally proved that the eyebrow feature enhanced the accuracy of computer-based face recognition. However, the problem of occlusion by hair should be solved in order to use the eyebrow feature for face recognition.