• Title/Summary/Keyword: FABP3

Search Result 79, Processing Time 0.025 seconds

Suppressive Effects of By-Product Extracts from Soybean on Adipocyte Differentiation and Expression of Obesity-Related Genes in 3T3-L1 Adipocytes (대두부산물의 지방세포분화 유도유전자의 발현저해 및 전지방세포 분화 억제 효과)

  • Choi, Mi-Sun;Kim, Jee-In;Jeong, Jin-Boo;Lee, Su-Bok;Jeong, Jae-Nam;Jeong, Hyung-Jin;Seo, Eul-Won;Kim, Taek-Yoon;Kwon, Oh-Jun;Lim, Jae-Hwan
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.358-367
    • /
    • 2011
  • Soybean is known to contain various phytochemicals that are related to anti-oxidant, anti-inflammatory and anti-obesity effects in mice and humans. The anti-obesity effect of by-product extracts from soybean on the differentiation of 3T3-L1 pre-adipocytes to adipocytes was investigated by suppressing adipocyte differentiation and lipid accumulation with Oil Red-O assay and quantitative PCR. In inducing differentiation of 3T3-L1 pre-adipocytes in the presence of an adipogenic cocktail, isobutylmethylanthine (IBMX), dexamathasone, and insulin, treatment with filtrated soybean soaked water, soybean milk, and soycurd residue from soybean curd processing significantly decreased mRNA expression of obesity-related gene such as PPAR${\gamma}$, Fabp4, and Scd1, adipsin, apolipoprotein (APOE) and adiponectin (ADIPOQ) without any significant cytotoxicity. We also determined the well-known isoflavones in soybean, such as daidzein and genistein, in the by-product extracts. Taken together, we suggest that soybean by-product extract showed anti-obesity effect by suppressing adipocyte related gene expression, and that by-products collected during soybean curd processing may be a good candidate as an ingredient in health care products.

Anti-inflammatory Effects of Extracts and Their Solvent Fractions of Rice Wine Lees (주박 추출물과 이들의 유기용매 분획물에 의한 항염증 활성)

  • Park, Mi-Jeong;Kang, Hyung-Taek;Kim, Mi-Sun;Shin, Woo-Chang;Sohn, Ho-Yong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.843-850
    • /
    • 2014
  • In the current study, we prepared eighty-five different kinds of solvent fractions of rice wine lees and nuruk extracts and investigated their effects on cell viability and nitric oxide (NO) production in mouse RAW 264.7 cells. Among the treated solvent fractions, only three solvent fractions (KSD-E1-3, KSD-E2-3 and KSD-E4-3) significantly decreased NO production in LPS-activated RAW 264.7 cells without affecting cell viability. And, they also reduced the expression of pro-inflammatory genes such as COX-2, TNF-alpha and iNOS. To understand the molecular mechanisms involved in the inhibition of inflammation in (KSD-E4-3)-treated RAW 264.7 cells, we carried out oligo DNA microarray analysis using Agilent Mouse microarray. To confirm microarray data, 6 genes (IL-1F6, iNOS, IL-10, Fabp4, IL-1RN and CSF2) were selected and performed RT-PCR and quantitative real-time PCR analysis with gene specific primers. The results of RT-PCR and real-time PCR agreed with microarray data. Overall, our results suggest that rice wine lees can be a novel resource for the development of foods and drugs which possess anti-inflammatory activity.

Inhibition of Adipocyte Differentiation and Adipogenesis by Supercritical Fluid Extracts and Marc from Cinnamomum verum (초임계 추출 계피오일의 3T3-L1 지방전구세포의 분화 전사인자 억제에 의한 지방대사 조절)

  • Park, Sung-Jin;Lee, In-Seon;Lee, Sam-Pin;Yu, Mi-Hee
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.510-517
    • /
    • 2013
  • This study was performed to evaluate the antiobesity effect of supercritical fluid extracts (SFC) and marc methanol extracts (SFM) from Cinnamomum verum in 3T3-L1 preadipocytes. In inducing the differentiation of 3T3-L1 preadipocytes in the presence of an adipogenic cocktail, iso-butylmethylanthine (IBMX), dexamathasone, and insulin, treatment with fraction residue SFC and SFM. SFC significantly reduced the mRNA expression of the transcription factor peroxisome proliferator-activate-dreceptor-${\gamma}$ ($PPAR{\gamma}$), the sterol regulatory-element-binding protein-1c (SREBP1c), and the CCAAT enhancer-binding-protein ${\alpha}$ ($C/EBP{\alpha}$) in a concentration-dependent manner. Moreover, SFC markedly down-regulated acyl-CoA synthetase-1 (ASC1), fatty acid synthesis (FAS), fatty acid transport-1 (FATP1), fatty acid binding protein 4 (FABP4), and perilipin. These findings suggest that SFC may be a potential therapeutic adjunct for obesity by targeting the differentiation of preadipocytes, as well as their functions.

Immuno-enhancing and Anti-obesity Effect of Abelmoschus manihot Root Extracts (금화규(Abelmoschus manihot) 뿌리 추출물의 면역증진 및 항비만효과)

  • Yu, Ju Hyeong;Geum, Na Gyeong;Ye, Joo Ho;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.411-419
    • /
    • 2021
  • In this study, we investigated in vitro immune-enhancing and anti-obesity activity of Abelmoschus manihot roots (AMR) in mouse macrophage RAW264.7 cells and mouse adipocytes 3T3-L1 cells. AMR increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. The inhibition of toll like receptor (TLR) 2 and 4 blocked AMR-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of mitogen-activated protein kinases (MAPKs) signaling pathway reduced AMR-mediated production of immunostimulatory factors. From these results, AMR is considered to have immune-enhancing activity through TLR2/4-mediated activation of MAPKs signaling pathway. In addition, AMR inhibited lipid accumulation and reduced the protein level such as CCAAT enhancer-binding protein alpha (CEBPα), peroxisome proliferator-activated receptor gamma (PPARγ), perilipin-1, adiponectin and fatty acid binding protein 4 (FABP4) associated with lipid accumulation in 3T3-L1 cells, indicating that AMR may have anti-obesity activity. Based on these results, AMR is expected to be used as a potential functional agent for immune enhancement and anti-obesity.

Expression of lipid metabolism genes provides new insights into intramuscular fat deposition in Laiwu pigs

  • Wang, Hui;Wang, Jin;Yang, Dan-dan;Liu, Zong-li;Zeng, Yong-qing;Chen, Wei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.390-397
    • /
    • 2020
  • Objective: The objective of this study was to measure the special expression pattern of lipid metabolism genes and investigate the molecular mechanisms underlying intramuscular fat (IMF) deposition in Longissimus dorsi muscle of Laiwu pigs. Methods: Thirty-six pigs (Laiwu n = 18; Duroc×Landrace×Yorkshire n = 18) were used for the measurement of the backfat thickness, marbling score, IMF content, and expression of lipid metabolism genes. Results: Significant correlations were found between IMF content and the mRNA expression of lipid metabolism genes. Of the 14 fat deposition genes measured, fatty acid synthase (FASN) showed the strongest correlation (r = 0.75, p = 0.001) with IMF content, and of the 6 fat removal genes, carnitine palmitoyl transferase 1B (CPT1B) exhibited the greatest negative correlation (r = -0.66, p = 0.003) with IMF content in Laiwu pig. Multiple regression analysis showed that CPT1B, FASN, solute carrier family 27 member 1 (SLC27A1), and fatty acid binding protein 3 (FABP3) contributed 38% of the prediction value for IMF content in Laiwu pigs. Of these four variables, CPT1B had the greatest contribution to IMF content (14%) followed by FASN (11%), SLC27A1 (9%), and FABP3 (4%). Conclusion: Our results indicate that the combined effects of an upregulation in fat deposition genes and downregulation in fat removal genes promotes IMF deposition in Laiwu pigs.

Antiobesity Effect of Mixture of Black Garlic and Garsinia cambogia Extracts in 3T3-L1 Adipocytes and L6 Skeletal Muscle Cells

  • Jung, Young-Mi;Lee, Dong-Sub;Lee, Seon-Ha;Jeoung, Nam-Ho;Kim, Bok-Jo
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.291-298
    • /
    • 2012
  • The antiobesity effect of the mixture of black garlic and Garsinia cambogia extracts (BGG) was investigated by measuring the Oil red O staining and the expressions of adipogenic genes during preadipocyte differentiation by real-time PCR in the 3T3-L1 adipocytes. BGG reduced contents of Oil red O dye in the 3T3-L1 adipocytes. mRNA expression levels of SREBP1c, C/EBPa, aP2/FABP4, and $PPAR{\gamma}$ which are adipogenic transcription factor, in cells treated with BGG were also significantly down regulated. Also, the phosphorylation of AMP-activated protein kinase (AMPK) in L6 cells was more increased by BGG. These results indicate that BGG seems to be more attractive compound for application of industry than individual extracts such as black garlic and Garsinia cambogia, considering it has two effects not only inhibit the preadipocyte differentiation but also activate the phosphorylation of AMPK unlike other two compound.

Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

  • Lim, Dajeong;Chai, Han-Ha;Lee, Seung-Hwan;Cho, Yong-Min;Choi, Jung-Woo;Kim, Nam-Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1075-1083
    • /
    • 2015
  • Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson's correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the biological mechanisms that determine adipose deposition within muscle.

Immune-Enhancing Effect and Anti-Obesity Activit of Kadsura japonica Fruits

  • Jin Hee Woo;Na Rae Shin;Ju-Hyeong Yu;So Jeong Park;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.87-87
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement and anti-obesity is increasing. Thus, in this study, we investigated whether Kadsura japonica fruits (KJF) exhibits immunostimulatory activity and anti-obesity activity. KJF increased the production of immunostimulatory factors and phagocytosis in RAW264.7 cells. Inhibition of TLR2 and TLR4 blocked KJF-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of MAPK and PI3K/AKT signaling pathway reduced KJF-mediated production of immunostimulatory factors, and the activation of MAPK and PI3K/AKT signaling pathway by KJF suppressed the inhibition of TLR2/4. KJF attenuated the lipid accumulation and the protein expression such as CEBPα, PPARγ, perilipin-1, adiponectin, and FABP4 related to the lipid accumulation in 3T3-L1 cells. In addition, KJF inhibited excessive proliferation of 3T3-L1 cells and protein expressions such as β-catenin and cyclin D1 related to cell growth. These findings indicate that KJF may have immunostimulatory activity and anti-obesity activity.

  • PDF

"Dietary supplementation of L-tryptophan" increases muscle development, adipose tissue catabolism and fatty acid transportation in the muscles of Hanwoo steers

  • Priatno, Wahyu;Jo, Yong-Ho;Nejad, Jalil Ghassemi;Lee, Jae-Sung;Moon, Jun-Ok;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.595-604
    • /
    • 2020
  • This study investigated the effects of dietary rumen-protected L-tryptophan (TRP) supplementation (43.4 mg of L-tryptophan kg-1 body weigt [BW]) for 65 days in Hanwoo steers on muscle development related to gene expressions and adipose tissue catabolism and fatty acid transportation in longissimus dorsi muscles. Eight Hanwoo steers (initial BW = 424.6 kg [SD 42.3]; 477 days old [SD 4.8]) were randomly allocated to two groups (n = 4) of control and treatment and were supplied with total mixed ration (TMR). The treatment group was fed with 15 g of rumen-protected TRP (0.1% of TMR as-fed basis equal to 43.4 mg of TRP kg-1 BW) once a day at 0800 h as top-dressed to TMR. Blood samples were collected 3 times, at 0, 5, and 10 weeks of the experiment, for assessment of hematological and biochemical parameters. For gene study, the longissimus dorsi muscle samples (12 to 13 ribs, approximately 2 g) were collected from each individual by biopsy at end of the study (10 weeks). Growth performance parameters including final BW, average daily gain, and gain to feed ratio, were not different (p > 0.05) between the two groups. Hematological parameters including granulocyte, lymphocyte, monocyte, platelet, red blood cell, hematocrit, and white blood cell showed no difference (p > 0.05) between the two groups except for hemoglobin (p = 0.025), which was higher in the treatment than in the control group. Serum biochemical parameters including total protein, albumin, globulin, blood urea nitrogen, creatinine phosphokinase, glucose, nonesterified fatty acids, and triglyceride also showed no differences between the two groups (p > 0.05). Gene expression related to muscle development (Myogenic factor 6 [MYF6], myogenine [MyoG]), adipose tissue catabolism (lipoprotein lipase [LPL]), and fatty acid transformation indicator (fatty acid binding protein 4 [FABP4]) were increased in the treatment group compared to the control group (p < 0.05). Collectively, supplementation of TRP (65 days in this study) promotes muscle development and increases the ability of the animals to catabolize and transport fat in muscles due to an increase in expressions of MYF6, MyoG, FABP4, and LPL gene.

Comparative Differential Expressions of Porcine Satellite Cell during Adipogenesis, Myogenesis, and Osteoblastogenesis

  • Jeong, Jin Young;Kim, Jang Mi;Rajesh, Ramanna Valmiki;Suresh, Sekar;Jang, Gul Won;Lee, Kyung-Tai;Kim, Tae Hun;Park, Mina;Jeong, Hak Jae;Kim, Kyung Woon;Cho, Yong Min;Lee, Hyun-Jeong
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.225-232
    • /
    • 2013
  • Satellite cells were derived from muscular tissue in postnatal pig. Satellite cell is an important to growth and development in animal tissues or organs. However, the progress underlying induced differentiation is not clear. The aim of this study was to evaluate the morphologic and the transcriptome changes in porcine satellite cell (PSC) treated with insulin, rosiglitazone, or dexamethasone respectively. PSC was obtained from postnatal muscle tissue. In study 1, for study the effect of insulin and FBS on the differentiated satellite cells, cells were cultured at absence or presence of insulin treated with FBS. Total RNA was extracted for determining the expression levels of myogenic PAX3, PAX7, Myf5, MyoD, and myogenin genes by real-time PCR. Myogenic genes decreased expression levels of mRNA in treated with insulin. In study 2, in order to clarify the relationship between rosiglitazone and lipid in differentiated satellite cells, we further examined the effect of FBS on lipid accumulation in the presence or absence of the rosiglitazone and lipid. Significant differences were observed between rosiglitazone and lipid by FBS. The mRNA of FABP4 and $PPAR{\gamma}$ increased in rosiglitazone treatment. In study 3, we examined the effect of dexamethasone on osteogenic differentiation in PSC. The mRNA was increased osteoblasotgenic ALP and ON genes treated with dexamethasone in 2% FBS. Dexamethasone induces osteoblastogenesis in differentiated PSC. Taken together, in differentiated PSCs, FABP4 and $PPAR{\gamma}$ increased to rosiglitazone. Whereas, no differences to FBS and lipid. These results were not comparable with previous reports. Our results suggest that adipogenic, myogenic, and osteoblastogenic could be isolated from porcine skeletal muscle, and identify culture conditions which optimize proliferation and differentiation formation of PSC.