• Title/Summary/Keyword: F. oxysporum f. sp. fragariae

Search Result 26, Processing Time 0.022 seconds

Infection of Daughter Plants by Fusarium oxysporum f. sp. fragariae through Runner Propagation of Strawberry (딸기 영양번식을 통한 Fusarium oxysporum f. sp. fragariae의 자묘 감염)

  • Nam, Myeong-Hyeon;Kang, Yang-Jae;Lee, In-Ha;Kim, Hong-Gi;Chun, Chang-Hoo
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.273-277
    • /
    • 2011
  • Fusarium oxysporum f. sp. fragariae (Fof), the causal agent of crown and root rot in strawberry, is the most serious soilborne disease of nursery plants in Korea. The possibility of infection by Fof through runner propagation from infected mother plants of strawberry cv. 'Kumhyang' was assessed in stolons and daughter plants hanging from raised beds. The number of daughter plants from an infected mother plant in plastic house and photosynthetic photon flux (PPF) system, 280 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was 2.7 and 3.8 plants after 58 days, respectively. However, healthy mother plants produced 6.5 and 8.4 daughter plants, respectively. The pathogen was detected in the uppermost portion of the stolon after 58 days, but was not detected further down the stolon. After 90 days, it was detected in all portions of the stolon between mother and $1^{st}$ daughter plant and in 60% of all $1^{st}$ daughter plants. The pathogen was not detected in the corresponding portions of the non-infected controls. These results show that infected mother plants can transmit Fof to their daughter plants without passing through the soil and $1^{st}$ daughter was used as mother plant in PPF system for propagating healthy plants.

Biological Control of Strawberry Fusarium Wilt Caused by Fusarium oxysporum f. sp.fragariae Using Bacillus velezensis BS87 and RK1 Formulation

  • Nam, Myeong-Hyeon;Park, Myung-Soo;Kim, Hong-Gi;Yoo, Sung-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.520-524
    • /
    • 2009
  • Two isolates, Bacillus sp. BS87 and RK1, selected from soil in strawberry fields in Korea, showed high levels of antagonism towards Fusarium oxysporum f. sp. fragariae in vitro. The isolates were identified as B. velezensis based on the homology of their gyrA sequences to reference strains. BS87 and RK1 were evaluated for control of Fusarium wilt in strawberries in pot trials and field trials conducted in Nonsan, Korea. In the pot trials, the optimum applied concentration of BS87 and RK1 for pre-plant root-dip application to control Fusarium wilt was $10^5$ and $10^6$ colony-forming units (CFU)/ml, respectively. Meanwhile, in the 2003 and 2005 field trials, the biological control efficacies of formulations of RK1 were similar to that of a conventional fungicide (copper hydroxide) when compared with a non-treated control. The RK1 formulation was also more effective than BS87 in suppressing Fusarium wilt under field conditions. Therefore, the results indicated that formulations of B. velezensis BS87 and RK1 may have potential to control Fusarium wilt in strawberries.

Microbe-Based Plant Defense with a Novel Conprimycin Producing Streptomyces Species

  • Kwak, Youn-Sig
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.54-54
    • /
    • 2015
  • Crops lack genetic resistance to most necrotrophic soil-borne pathogens and parasitic nematodes that are ubiquitous in agroecosystems worldwide. To overcome this disadvantage, plants recruit and nurture specific group of antagonistic microorganisms from the soil microbiome to defend their roots against pathogens and other pests. The best example of this microbe-based defense of roots is observed in disease-suppressive soils in which the suppressiveness is induced by continuously growing crops that are susceptible to a pathogen. Suppressive soils occur globally yet the microbial basis of most is still poorly described. Fusarium wilt, caused by Fusarium oxysporum f. sp. fragariae is a major disease of strawberry and is naturally suppressed in Korean fields that have undergone continuous strawberry monoculture. Here we show that members of the genus Streptomyces are the specific bacterial components of the microbiome responsible for the suppressiveness that controls Fusarium wilt of strawberry. Furthermore, genome sequencing revealed that Streptomyces griseus, which produces a novel thiopetide antibiotic, is the principal species involved in the suppressiveness. Finally, chemical-genetic studies demonstrated that S. griseus antagonizes F. oxysporum by interfering with fungal cell wall synthesis. An attack by F. oxysporum initiates a defensive "cry for help" by strawberry root and the mustering of microbial defenses led by Streptomyces. These results provide a model for future studies to elucidate the basis of microbially-based defense systems and soil suppressiveness from the field to the molecular level.

  • PDF

Factors affecting the occurrence of wilt of strawberry caused by Fusarium oxysporum f. sp. fragariae in Korea

  • Nam, Myeong-Hyeon;Jung, Suck-Ki;Kim, Hong-Gi;Song, Jeong-Young;Yoo, Sung-Joon
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.118-118
    • /
    • 2003
  • The occurrence of Fusarium wilt in strawberry fields in Korea was assessed from 2001 to 2003. Fusarium wilt was found from June to August in nursery beds, from September to October after planting in production beds, and from January to March during harvest. The symptoms seen were root rots, discolored vascular tissue in the crown and deformation and yellowing of central leaflets. The disease occurred in up to 30% of plants in 37 of 214 fields surveyed. Fusarium of sporum Schlecht. ex Fr. f. sp. fragariae was frequently isolated from cvs. Dochiodome, Maehyang, Redpearl, Samaberry and Akihime. Factors affecting the occurrence of Fusarium wilt were investigated; infested soils had high salt concentrations, low pH, OM, average P2O5 and exchangeable. Fusarium wilt was more frequent following conventional basal fertilization than after non-nitrogen basal fertilization and more frequent following the use of NH4-N than after NO3-N.

  • PDF

Occurrence of Fusarium wilt and Twospotted Spider Mite under Plastic Mulched and Non-Plastic Mulched Bed in Hydroponic Culture of Strawberry (딸기 수경재배에서 베드 피복유무에 따른 시들음병과 점박이응애 발생 양상)

  • Nam, Myeong Hyeon;Kim, Hyun Sok;Kim, Tae Il;Oh, Sang-Keun
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.257-264
    • /
    • 2018
  • Hydroponic strawberry culture system is increasing annually. Most of strawberry farmers use mulched bed in hydroponic culture and strawberry plants were transplanted in early September. After transplanting, Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae and twospotted spider mite (TSSM), Tetranychus urticae, can increase their occurrence under high temperature condition. Therefore, we conducted for comparison occurrence of Fusarium wilt and TSSM on mulched with green polyethylene film and non-mulched bed. Occurrence of Fusarium wilt on mulched bed was started from early October and more increase than non-mulched bed. Damage rate of TSSM on mulched bed was shown higher than non-mulched bed. Temperature of substrate in mulched bed increased than non-mulched bed, but relative humidity near plants was decreased. As a result, use of non-mulched bed should be effective for reducing of Fusarium wilt and TSSM on strawberry plants.

Effect of Nutrition Solution pH and Electrical Conductivity on Fusarium Wilt on Strawberry Plants in Hydroponic Culture (딸기 수경재배에서 시들음병 발생에 배양액 pH와 EC 효과)

  • Nam, Myeong Hyeon;Lee, Hee Chul;Kim, Tae il;Lee, Eun Mo;Yoon, Hae Suk
    • Research in Plant Disease
    • /
    • v.24 no.1
    • /
    • pp.26-32
    • /
    • 2018
  • Fusarium wilt on strawberry plants caused by Fusarium oxysporum f. sp. fragariae (Fof) is a major disease in Korea. The prevalence of this disease is increasing, especially in hydroponic cultivation in strawberry field. This study assessed the effect of nutrition solution pH and electrical conductivity (EC) on Fusarium wilt in vitro and in field trials. pH levels of 5.0, 5.5, 6.0, 6.5, 7.0, and 7.5 were assayed in vitro and in field trials. EC levels at 0, 0.5, 0.8, 1.0, and $1.5dS{\cdot}m^{-1}$ were assayed in field trials. Mycelial growth of Fof increased with increasing pH and was highest at $25^{\circ}C$ pH 7 and lowest at $20^{\circ}C$, pH 5.0 in vitro. The incidence of Fusarium wilt was lowest in the pH 6.5 treatment and highest in the pH 5 treatment in field trials. At higher pH levels, the EC decreased in the drain solution and the potassium content of strawberry leaves increased. In the EC assay, the severity of Fusarium wilt and nitrogen content of leaves increased as the EC increased. These results indicate that Fusarium wilt is related to pH and EC in hydroponic culture of strawberry plants.