• Title/Summary/Keyword: F-18 HARV

Search Result 7, Processing Time 0.021 seconds

On-Line Aircraft Parameter Identification Using Fourier Transform Regression With an Application to NASA F/A-18 Harv Flight Data

  • Song, Yongkyu;Song, Byungheum;Seanor, Brad;Napolitano, Marcello R.
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.327-337
    • /
    • 2002
  • This paper applies a recently developed on-line parameter identification (PID) technique to sets of real flight data and compares the results with those of a state-of-the-art off-line PID technique. The on-line PID technique takes Linear Regression from Fourier Transformed equations and the off-line PID is based on the traditional Maximum Likelihood method. Sets of flight data from the NASA F/A-18 High Alpha research Vehicle (HARV) circraft, which has been recorded from specifically designed maneuvers and used for our line parameter estimation, are used for this study. The emphasis is given on the accuracy and on-line measure of reliability of the estimates. The comparison is performed for both longitudinal and lateral-directional dynamics for maneuvers at angles of attack ranging u=20°through $\alpha$=40°. Results of the two estimation processes are also compared with baseline wind tunnel estimates whenever possible.

Real-time Aircraft Parameter Estimation using LWR

  • Song,Yongkyu;Hong, Sung-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.141.4-141
    • /
    • 2001
  • In this paper the Local Weighted Regression LWR technique is applied to the estimation of aircrcraft parameters. The method consists In improving the Local Weighted Regression LWR technique by adding a data Retention-and-Deletion RD strategy. The improvement comes with reduced computational effort since the two techniques can share their main computational procedures. The purpose of the study was to establish if the proposed algorithm could provide fast and reliable real-time estimations, with accuracy comparable to other well-known off-line identification schemes. The algorithm was tested using specific parameter estimation maneuvers and flight data of the NASA F/A-18 HARV. The results were compared with both the estimation obtained from ...

  • PDF

Fault-Tolerant Networked Control Systems Using Control Allocation for Failures in Multiple Control Surfaces (다중 제어면 고장에 대한 제어면 재분배 고장 대처 기법)

  • Yang, In-Seok;Kim, Dong-Gil;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1067-1073
    • /
    • 2011
  • In this paper, the methodology of a CA (Control Allocation) based FTNCS (Fault-Tolerant Networked Control System) is proposed. Control allocation is a control surface management technique by redistributing the redundant control surfaces in overactuated systems. In modern high performance aircrafts, they adopt many redundant control surfaces to provide high performance and to satisfy various tactical requirements. Moreover, redundant control surfaces provide an opportunity to compensate performance degradation due to failures in more than one actuator by re-allocating redundant control surfaces. Simulation results with an F-18 HARV demonstrate that the proposed CA based FTNCS can achieve a fast and accurate tracking performance even in the presence of actuator faults.

Daisy Chain Method for Control Allocation Based Fault-Tolerant Control

  • Kim, Jiyeon;Yang, Inseok;Lee, Dongik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.265-272
    • /
    • 2013
  • This paper addresses a control allocation method for fault-tolerant control by redistributing redundant control surfaces. The proposed method is based on a classical daisy chain approach for the compensation of faulty actuators. The existing daisy chain method calculates a desired moment according to a number of actuator groups. However, this method has a significant limitation; that is, any faulty actuator belonging to the last actuator group cannot be compensated, since there is no more redundant actuator group that can be used to generate the required moments. In this paper, a modified daisy chain method is proposed to overcome this problem. Using the proposed method, the order of actuator groups is readjusted so that actuator groups containing any faulty actuator are always placed in an upper group instead of the last one. A set of simulation results with an F-18 HARV aircraft demonstrate that the proposed method can achieve better performance than the existing daisy chain method.

A Study on the Design and Validation of Switching Control Law (전환제어법칙 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • The flight control law designed for prototype aircraft often leads to degraded stability and performance, although developed control law verify by non-real time simulation and pilot based evaluations. Therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS (In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV (High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA (Variable stability In flight Simulation Test Aircraft) programs. The IFS necessary switching control law such as fader logic and integrator stand-by mode to reduce abrupt transient and minimize the integrator effect for each flight control laws switching. This paper addresses the concept of switching mechanism with fader logic of "TFS (Transient Free Switch)" and stand-by mode of "feedback type" based on SSWM (Software Switching Mechanism). And the result of real-time pilot evaluation reveals that the aircraft is stable for inter-conversion of flight control laws and transient response is minimized.

A Study on the Design and Validation of Switching Mechanism in Hot Bench System-Switch Mechanism Computer Environment (HBS-SWMC 환경에서의 전환장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Ahn, Jong-Min;Lee, Dong-Kyu;Park, Sang-Seon;Park, Sung-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.711-719
    • /
    • 2008
  • Although non-real time simulation and pilot based evaluations are available for the development of flight control computer prior to real flight tests, there are still many risky factors. The control law designed for prototype aircraft often leads to degraded performance from the initial design objectives, therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS(In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV(High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA(Variable stability. In flight Simulation Test Aircraft) programs. This paper addresses the concept of switching mechanism for FLCC(Flight Control Computer)-SWMC(Switching Mechanism Computer) using 1553B communication based on flight control law of advanced supersonic trainer. And, the fader logic of TFS(Transient Free Switch) and stand-by mode of reset '0' type are designed to reduce abrupt transient and minimize the integrator effect in pitch axis control law. It hans been turned out from the pilot evaluation in real time that the aircraft is controllable during the inter-conversion process through the flight control computer, and level 1 handling qualities are guaranteed. In addition, flight safety is maintained with an acceptable transient response during aggressive maneuver performed in severe flight conditions.

Real-time Aircraft Upset Detection and Prevention Based On Extended Kalman Filter (확장칼만필터를 이용한 항공기 비정상 비행상황 판단 및 방지를 위한 실시간 대처법 연구)

  • Woo, Beomki;Park, On;Kim, Seungkeun;Suk, Jinyoung;Kim, Youdan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.724-733
    • /
    • 2017
  • Accidents caused by upset condition leads to fatal damage to both manned and unmanned aircraft. This paper deals with real-time detection of these aircraft upset situations to prevent further severe situations. Firstly, the difference between sensor measurement and predicted measurement from Extended Kalman filter is monitored to determine whether a target aircraft goes into an upset condition or not. In addition, repeating the time update stage of the Extended Kalman filter for a specific length of time can enable future upset situation prediction. The results of aforementioned both the approaches will build a bridge to upset prevention for future generation of manned/unmanned aircraft.