• Title/Summary/Keyword: F gene

Search Result 1,485, Processing Time 0.027 seconds

Inheritance between Le Gene and Ti Gene in Soybean (Glycine max L.)

  • Lee, Kyoung Ja;Park, Mo Se;Sung, Mi Kyung;Kim, Myung Sik;Chung, Jong Il
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.97-100
    • /
    • 2008
  • Lectin protein and Kunitz trypsin inhibitor (KTI) protein of mature soybean seed are a main antinutritional factor in soybean seed. The Le gene controls a lectin protein and Ti gene controls the KTI protein in soybean. Ti locus has been located on linkage group 9 in the classical linkage map of soybean. Position of Le locus on linkage map was not identified. Genetic relationship between Ti locus and Le locus could be useful in soybean breeding program for the genetic elimination of these factors. The objective of this study was to determine the independent inheritance or linkage between Ti locus and Le locus in soybean seed. Two $F_2$ populations were developed from three parents (Gaechuck#1, T102, and PI548415). The $F_1$ seeds from Gaechuck#1 (titiLeLe) ${\times}$ T102 (TiTilele) and Gaechuck#1 (titiLeLe) ${\times}$ PI548415 (TiTilele) were obtained. The lectin and KTI protein were analysed from $F_2$ seeds harvested from the $F_1$ plants to find independent assortment or linkage between Ti locus and Le locus. The segregation ratios of 3 : 1 for Le locus (129 Le_ : 44 lele) and Ti locus (132 Ti_ : 41 titi) and were observed. The segregation ratios of 9 : 3 : 3 : 1 (95 Le_Li_ : 34 Le_titi: 37 leleTi_ : 7 leletiti) between Le gene and Ti gene in $F_2$ seeds were observed. This data showed that Ti gene was inherited independently with the Le gene in soybean. These results will be helpful in breeding program for selecting the line with lacking both KTI and lectin protein in soybean.

Highly Efficient Electroporation-mediated Transformation into Edible Mushroom Flammulina velutipes

  • Kim, Jong-Kun;Park, Young-Jin;Kong, Won-Sik;Kang, Hee-Wan
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.331-335
    • /
    • 2010
  • In this study, we developed an efficient electroporation-mediated transformation system featuring Flammulina velutipes. The flammutoxin (ftx) gene of F. velutipes was isolated by reverse transcription-PCR. pFTXHg plasmid was constructed using the partial ftx gene (410 bp) along with the hygromycin B phosphotransferase gene (hygB) downstream of the glyceraldehydes-3-phosphate dehydrogenase (gpd) promoter. The plasmid was transformed into protoplasts of monokaryotic strain 4019-20 of F. velutipes by electroporation. High transformation efficiency was obtained with an electric-pulse of 1.25 kV/cm by using 177 transformants/${\mu}g$ of DNA in $1{\times}10^7$ protoplasts. PCR and Southern blot hybridization indicated that a single copy of the plasmid DNA was inserted at different locations in the F. velutipes genome by non-homologous recombination. Therefore, this transformation system could be used as a useful tool for gene function analysis of F. velutipes.

Enhanced Homologous Recombination in Fusarium verticillioides by Disruption of FvKU70, a Gene Required for a Non-homologous End Joining Mechanism

  • Choi, Yoon-E.;Shim, Won-Bo
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Fusarium verticillioides (teleomorph Gibberella moniliformis) is associated with maize worldwide causing ear rot and stalk rot, and produces fumonisins, a group of mycotoxins detrimental to humans and animals. While research tools are available, our understanding of the molecular mechanisms associated with fungal virulence and fumonisin biosynthesis in F. verticillioides is still limited. One of the restraints that hampers F. verticillioides gene characterization is the fact that homologous recombination (HR) frequency is very low (<2%). Screening for a true gene knock-out mutant is a laborious process due to a high number of ectopic integrations. In this study, we generated a F. verticillioides mutant (SF41) deleted for FvKU70, a gene directly responsible for non-homologous end-joining mechanism, with the aim of improving HR frequency. Here, we demonstrate that FvKU70 deletion does not impact key Fverticillioides phenotypes, e.g., development, secondary metabolism, and virulence, while dramatically improving HR frequency. Significantly, we also confirmed that a high percentage (>85%) of the HR mutant strains harbor a desired mutation with no additional copy of the mutant allele inserted in the genome. We conclude that SF41 is suitable for use as a type strain when performing high-throughput gene function studies in F. verticillioides.

Effect of Transposable Element Insertion on Gene Expression (Transposable Element 삽입의 유전자 발현에 미치는 영향)

  • 김화영
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.349-356
    • /
    • 1987
  • Insertions of transposable elements in or near a structural gene give rise to null phenotypes, reduced levels of gene expression, or alteration on the tissue-specific pattern of gene expression. Null phenotypes often result from insertions in exons. Reduced levels of gene expression results from insertions in various regions such as promoter region, 5' non-translated region, exon and intron. The maize allele of Adh1-3F1124 is an example of alteration in the tissue-specific patetern of gene expression. Adh1-3F1124 contains a Mu element inserted 31 bp 5' to the transcriptional start site of the wild-type Adh1 activity in seeds and anaerobically-treated seedlings but normal levels in the pollen. Upon the insertion of a transposable element a certain number of host DNA sequences at the insertion site is duplcated. When transposable elements excise, all element sequences are deleted. However, the duplicated host sequences may be left intact or deleted to various extents. This results in null phenotypes, restoration of original levels of gene expression, or altered levels of gene expression. On the basis of effects of transposable-element insertions or excisions on gene expression, the usefulness of transposable ellements for studies on gene expression is discussed.

  • PDF

Structural and Functional Analysis of a Forkhead Gene, fkhF, in a Filamentous Fungus Aspergillus nidulans (사상성 진균 Aspergillus nidulans에서 forkhead 유전자인 fkhF의 구조와 기능 분석)

  • Park, Mi-Hye;Kim, Hyoun-Young;Kim, Jong-Hwa;Han, Kap-Hoon
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.312-317
    • /
    • 2009
  • Genome analysis of a model filamentous fungus, Aspergillus nidulans, revealed that there are six putative forkhead genes. Among them, fkhF (AN8949.2) showed A. nidulans-specific. fkhF gene is located in chromosome VII and composed of 2,337 bp coding region for 778 amino acid. Since little is known about the involvement of the forkhead proteins in the developmental process of the filamentous fungi, including A. nidulans, we generated a deletion mutant of fkhF gene and analyzed. Deletion of fkhF resulted in less-dense conidiophore formation in a solid culture. However, the sexual developmental process or cleistothecia formation was normal. Furthermore, fkhF deletion mutant produced conidiophores and conidia under the submerged culture, suggesting that the fkhF gene is involved in repression of inappropriated induction and maturation of asexual developmental process but not in sexual development.

Identification of Potential Corynebacterium ammoniagenes Purine Gene Regulators Using the pur-lacZ Reporter in Escherichia coli

  • HAN , RI-NA;CHO, ICK-HYUN;CHUNG, SUNG-OH;HAN, JONG-KWON;LEE, JIN-HOO;KIM, SOO-KI;CHOI, KANG-YELL
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1249-1255
    • /
    • 2004
  • This study has developed Corynebacterium ammoniagenes (c. ammoniagenes) purine gene transcriptional reporters (purF-lacZ and purE-lacZ) that function in Escherichia coli (E. coli) DH5a. After transformation of a C. ammoniagenes gDNA library into E. coli cells harboring either purF-lacZ or purE-lacZ, C. ammoniagenes clones were obtained that repress purF-lacZ and purE-lacZ gene expression. The potential purE and purF regulatory genes are homologous to the genes encoding transcription regulators, the regulatory subunit of RNA polymerase, and genes for purine nucleotide biosynthesis of various bacteria. The C. ammoniagenes purE-lacZ and purF-lacZ reporters were repressed by adenine and guanine within E. coli, indicating similarity in the regulatory mechanism of purine biosynthesis in C. ammoniagenes and E. coli. Gene regulation of pur-lacZ by adenine and guanine was partly abolished in cells expressing potential purine regulatory genes, indicating functionality of the purine gene regulators in repression of purE-lacZ and purF-lacZ. The purE-lacZ and purF-lacZ reporters can be used for the screening of genes involved in the regulation of the de novo synthesis of the purine nucleotides.

The novel peptide F29 facilitates the DNA-binding ability of hypoxia-inducible factor-1α

  • Choi, Su-Mi;Park, Hyun-Sung
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.737-742
    • /
    • 2009
  • Hypoxia-inducible factor-$1{\alpha}/{\beta}$ (HIF-$1{\alpha}/{\beta}$) is a heterodimeric transcriptional activator that mediates gene expression in response to hypoxia. HIF-$1{\alpha}$ has been noted as an effective therapeutic target for ischemic diseases such as myocardiac infarction, stroke and cancer. By using a yeast two-hybrid system and a random peptide library, we found a 16-mer peptide named F29 that directly interacts with the bHLH-PAS domain of HIF-$1{\alpha}$. We found that F29 facilitates the interaction of the HIF-$1{\alpha/\beta}$ heterodimer with its target DNA sequence, hypoxia-responsive element (HRE). The transient transfection of an F29-expressing plasmid increases the expression of both an HRE-driven luciferase gene and the endogenous HIF-1 target gene, vascular endothelial growth factor (VEGF). Taken together, we conclude that F29 increases the DNA-binding ability of HIF-$1{\alpha}$, leading to increased expression of its target gene VEGF. Our results suggest that F29 can be a lead compound that directly targets HIF-$1{\alpha}$ and increases its activity.

Genome Sequencing and Genome-Wide Identification of Carbohydrate-Active Enzymes (CAZymes) in the White Rot Fungus Flammulina fennae

  • Lee, Chang-Soo;Kong, Won-Sik;Park, Young-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.300-312
    • /
    • 2018
  • Whole-genome sequencing of the wood-rotting fungus, Flammulina fennae, was carried out to identify carbohydrate-active enzymes (CAZymes). De novo genome assembly (31 kmer) of short reads by next-generation sequencing revealed a total genome length of 32,423,623 base pairs (39% GC). A total of 11,591 gene models in the assembled genome sequence of F. fennae were predicted by ab initio gene prediction using the AUGUSTUS tool. In a genome-wide comparison, 6,715 orthologous groups shared at least one gene with F. fennae and 10,667 (92%) of 11,591 genes for F. fennae proteins had orthologs among the Dikarya. Additionally, F. fennae contained 23 species-specific genes, of which 16 were paralogous. CAZyme identification and annotation revealed 513 CAZymes, including 82 auxiliary activities, 220 glycoside hydrolases, 85 glycosyltransferases, 20 polysaccharide lyases, 57 carbohydrate esterases, and 45 carbohydrate binding-modules in the F. fennae genome. The genome information of F. fennae increases the understanding of this basidiomycete fungus. CAZyme gene information will be useful for detailed studies of lignocellulosic biomass degradation for biotechnological and industrial applications.

Isolation and Characterization of a Novel Flavonoid 3'-Hydroxylase (F3'H) Gene from a Chrysanthemum (Dendranthema grandiflorum) and Its Gamma-ray Irradiated Mutants (감마선 처리에 의한 스프레이형 국화 화색변이체로부터 Flavonoid 3'-Hydroxylase(F3'H) 유전자의 분리 및 특성 구명)

  • Chung, Sung-Jin;Lee, Geung-Joo;Kim, Jin-Baek;Kim, Dong-Sub;Kim, Sang-Hoon;Kang, Si-Yong
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.162-170
    • /
    • 2012
  • The objectives of this study were to isolate and the sequence of novel $F3'H$ gene related to an anthocyanin pathway, and to confirm the expression patterns of the gene involved in the flower color variations of chrysanthemum mutants. In this study, we isolated the full-length cDNAs and the genomic DNAs of an $F3'H$ gene from a wild type (WT) chrysanthemum (cv. Argus) and its three color mutants. The sequence analysis revealed a putative open reading frame of 1,527 bp that encodes a polypeptide of 509 amino acids. Sequence homology ranged from 97% to 99% between 'Argus' and its three color mutants. The sequence analysis from the genomic DNA revealed that the chrysanthemum $DgF3'H$ gene consisted of three exons and two introns spanning a 3,830 bp length. The sizes of the gene for three mutants ranged from a shorter size of 3,828 bp to a longer size of 3,838 bp when compared to the size of WT. The total size of the two introns was 2,157 bp for WT, but those for three color mutants ranged from 2,154 bp to 2,159 bp. A result of an RT-PCR analysis indicated that the color variations of the mutants AM1 and AM2 can be partly explained by the structural modification derived from the sequencial changes in the gene caused by gamma ray. A Southern blot analysis revealed that the $DgF3'H$ gene existing as multiple copies in the chrysanthemum genome. A systemic study will be further needed to provide a genetic mechanism responsible for the color mutation and to uncover any involvement of genetic elements for the expression of the $DgF3'H$ gene for the color variation in chrysanthemum.

Genetic analysis of clubroot resistance in Chinese cabbage using single spore isolate of Plasmodiophora brassicae and development of RAPD marker linked to its resistance gene

  • Cho, Kwang-Soo;Hong, Su-Young;Han, Young-Han;Yoon, Bong-Kyeong;Ryu, Seoung-Ryeol;Woo, Jong-Gyu
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.101-106
    • /
    • 2008
  • To identify inheritance of clubroot disease resistance genes in Chinese cabbage, seedling tests of $BC_1P_1,\;BC_1P_2$, and $F_2$ populations derived from $F_1$ hybrid(var. CR Saerona) using single spore isolate(race 4 identified with William's differential host) from Plasmodiophora brassciae were conducted. Resistance(R) and susceptible(S) plants segregated to 1:0 in backcross to the resistant parent. The $F_2$ population segregated in a 3(R):1(S) ratio. This result implied that the resistance of clubroot disease is controlled by a single dominant gene to the race 4 of P. brassicae in CR Saerona. To develop DNA markers linked to clubroot resistance genes, 185 plants of CR Saerona among $F_2$ populations were used. A total of 300 arbitrary decamer was applied to $F_2$ population using BSARAPD(Bulked segregant analysis-Randomly amplified polymorphic DNA). One RAPD marker linked to clubroot resistance gene in CR Saerona($OPJ_{1100}$) was identified. This marker was 3.1 cM in distance from resistance gene in $F_2$ population. This marker may be useful for a marker-assisted selection(MAS) and gene pyramiding of the clubroot disease resistant gene in Chinese cabbage breeding programs.

  • PDF