• Title/Summary/Keyword: F/M 비

Search Result 1,058, Processing Time 0.033 seconds

Growth, Photosynthesis and Chlorophyll Fluorescence of Chinese Cabbage in Response to High Temperature (고온 스트레스에 대한 배추의 생장과 광합성 및 엽록소형광 반응)

  • Oh, Soonja;Moon, Kyung Hwan;Son, In-Chang;Song, Eun Young;Moon, Young Eel;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.318-329
    • /
    • 2014
  • In order to gain insight into the physiological responses of plants to high temperature stress, the effects of temperature on Chinese cabbage (Brassica campestris subsp. napus var. pekinensis cv. Detong) were investigated through analyses of photosynthesis and chlorophyll fluorescence under 3 different temperatures in the temperature gradient tunnel. Growth (leaf length and number of leaves) during the rosette stage was greater at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures than at ambient temperature. Photosynthetic $CO_2$ fixation rates of Chinese cabbage grown under the different temperatures did not differ significantly. However, dark respiration rate was significantly higher in the cabbage that developed under ambient temperature relative to elevated temperature. Furthermore, elevated growth temperature increased transpiration rate and stomatal conductance resulting in an overall decrease of water use efficiency. The chlorophyll a fluorescence transient was also considerably affected by high temperature stress; the fluorescence yield $F_J$, $F_I$, and $F_P$ decreased considerably at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, with induction of $F_K$ and decrease of $F_V/F_O$. The values of RC/CS, ABS/CS, TRo/CS, and ETo/CS decreased considerably, while DIo/CS increased with increased growth temperature. The symptoms of soft-rot disease were observed in the inner part of the cabbage heads after 7, 9, and/or 10 weeks of cultivation at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, but not in the cabbage heads growing at ambient temperature. These results show that Chinese cabbage could be negatively affected by high temperature under a future climate change scenario. Therefore, to maintain the high productivity and quality of Chinese cabbage, it may be necessary to develop new high temperature tolerant cultivars or to markedly improve cropping systems. In addition, it would be possible to use the non-invasive fluorescence parameters $F_O$, $F_V/F_M$, and $F_V/F_O$, as well as $F_K$, $M_O$, $S_M$, RC/CS, ETo/CS, $PI_{abs}$, and $SFI_{abs}$ (which were selected in this study), to quantitatively determine the physiological status of plants in response to high temperature stresses.

Quality characteristics of spray dried powder from unripe fig extract (미숙 무화과 추출물을 이용한 분무건조 분말의 품질특성)

  • Chae, Ho-Yong;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.355-360
    • /
    • 2016
  • In this study, the quality characteristics of spray dried powders from unripe fig extract were investigated. The protease activities of unripe fig and peeled unripe fig extract were 0.11 unit/mL and 0.28 unit/mL, respectively. The spray dried powder of unripe fig extracts was analzed using different maltodextrin ratios (F-MD 5, 5% maltodextrin; F-MD 10, 10% maltodextrin; and F-MD 20, 20% maltodextrin). The spray-dried powder showed the highest protease activity with F-MD 10 (0.84 unit/g). The moisture content and L value of the spray-dried powder were higher than those of the freeze-dried powder. The particle diameter of the freeze-dried powder ($209.67{\mu}m$) was higher than that of the spray-dried powders ($22.18{\sim}37.33{\mu}m$). The water absorption index ranged from 0.18 to 0.40, while the water solubility index ranged from 94.40% to 98.80%. In the in vitro digestion study, spray-dried powders of the unripe fig showed a protease survival range of 16.47%~24.80%. In conclusion, it is considered appropriate to use the spray-dried powder (F-MD 10) of unripe fig as a meat tenderizer for processing food.

Evaluation for Applications of Displacement Criterion by the Critical Strain of Uniaxial Compression in Rock Mass Tunnel (일축압축 한계변형률에 의한 암반터널 변위기준 적용성 평가)

  • Kim, Young-Su;Kim, Dae-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.321-329
    • /
    • 2009
  • Laboratory compressive test was conducted on 6 different types of rock in order to investigate the characteristic of critical strain under uniaxial and triaxial stress condition. The results of uniaxial compressive test mostly ranged within 1~100MPa, the critical strain was also located between 0.1~1.0%. Therefore the results distributed within the upper and lower boundary proposed by Sakurai (1982). And the failure/critical strain ratio (${\varepsilon}_f/{\varepsilon}_0$) showed between 1.0~1.8 value depending on the uniaxial compressive strength. The results of critical strain by triaxial compressive test showed below 0.8% value for all test, the M value calculated from uniaxial and triaxial compressive test results ranged 1.0~8.0 for most of rock specimens. It is concluded that failure strain (${\varepsilon}_{f3}$) of rock mass, which is in triaxial stress condition is larger than the results of uniaxial stress condition (${\varepsilon}_{f1}$) by 1.0~8.0 times and value showed 1.0~1.8 larger value than critical strain (${\varepsilon}_{01}$). Therefore it is a conservative way for rock tunnel to use critical strain (${\varepsilon}_{01}$) calculated from a uniaxial compressive strength on tunnel displacement monitoring.

A CMOS Switched-Capacitor Interface Circuit for MEMS Capacitive Sensors (MEMS 용량형 센서를 위한 CMOS 스위치드-커패시터 인터페이스 회로)

  • Ju, Min-sik;Jeong, Baek-ryong;Choi, Se-young;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.569-572
    • /
    • 2014
  • This paper presents a CMOS switched-capacitor interface circuit for MEMS capacitive sensors. It consist of a capacitance to voltage converter(CVC), a second-order ${\Sigma}{\Delta}$ modulator, and a comparator. A bias circuit is also designed to supply constant bias voltages and currents. This circuit employes the correlated-double-sampling(CDS) and chopper-stabilization(CHS) techniques to reduce low-frequency noise and offset. The designed CVC has a sensitivity of 20.53mV/fF and linearity errors less than 0.036%. The duty cycle of the designed ${\Sigma}{\Delta}$ modulator output increases about 5% as the input voltage amplitude increases by 100mV. The designed interface circuit shows linearity errors less than 0.13%, and the current consumption is 0.73mA. The proposed circuit is designed in a 0.35um CMOS process with a supply voltage of 3.3V. The size of the designed chip including PADs is $1117um{\times}983um$.

  • PDF

Separation of Aromatics in Light Cycle Oil by Solvent Extraction - Re-extraction of Aromatics in Extract Phase - (용매 추출법에 의한 분해경유중의 방향족 분리 -추출상중의 방향족의 역수출-)

  • Kim, Su Jin;Kim, Duk-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.967-972
    • /
    • 1997
  • Recovery of aromatics in extract phase which was obtained by batch equilibrium extraction between light cycle oil(LCO) and dimethylsulfoxide(DMSO) solution as solvent was investigated by re-extraction. To select the most suitable re-extraction solvent for recovery of aromatics in extract phase, distribution equilibrium was measured between extract phase and solvents. The solvents used were benzene(B), toluene(T), m-Xylene(mX), n-hexane(Hx) and n-hexane(Hx) and n-Octane(Ot). From the distribution coefficients and yields of aromatics, Hx seemed to be the most suitable. Furthermore, effects of operation parameters for re-extraction of aromatics in the extract phase were studied by batch equilibrium re-extracion with Hx as solvent. Yields of aromatics were found to increase with increasing solvent/feed (extract phase) mass ratio(S/F), while distribution coefficients of aromatics were fixed irrespective of S/F used. Operating temperature did not affect distribution coefficients and yields of aromatics. Distibution coefficients and yields of naphthalene group(carbon numer : 10~12) increased with increasing cabon number. Mass transfer rates of aromatics were also measured with a batch stirred vessel.

  • PDF

Preparation of Polymer Gel Electrolyte for EDLCs using P(VdF-co-HFP)/PVP (P(VdF-co-HFP)/PVP를 이용한 EDLC용 고분자 겔 전해질의 제조)

  • Jung, Hyun-Chul;Jang, In-Young;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.243-249
    • /
    • 2006
  • Porous polymer gel electrolytes (PGEs) based on poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) as a polymer matrix and polyvinylpyrolidone (PVP) as a pore-forming agent were prepared and electrochemical properties were investigated for an electric double layer capacitor (EDLC) in order to increase a permeability of an electrolyte into the PGE. Propylene carbonate (PC) and ethylene carbonate (EC) as plasticizers, and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a supporting salt for the PGE were used. EDLC unit cells were assembled with the PGE and electrode comprising BP-20 and MSP-20 as activated carbon powders, Super P as a conducting agent, and P(VdF-co-HFP)/PVP as a mixed binder. Ion conductivity of PGEs increased with an increased PVP content and was the best at 7 wt% PVP, whereas electrochemical characteristics such as AC-ESR of unit cell were better in 3 wt%. And electrochemical characteristics of the unit cell with PGE were the best at a 33 : 33 weight ratio of PC to EC. Specific capacitance of a mixed plasticizer system of PE and EC was higher than that of pure PC. Ion conductivity of PGEs with a film thickness of $20{\mu}m$ was higher, but electrochemical characteristics of unit cells were higher for a $50{\mu}m$ membrane thickness. Also, the unit cell has shown the highest capacitance of 31.41 F/g and more stable electrochemical performance when PGE and electrode were hot pressed. Consequently, the optimum composition ratio of PGE for EDLCs was 23 : 66 : 11 wt% such as P(VdF-co-HFP) : PVP = 20 : 3 wt% and PC : EC = 44 : 22 wt%. In this case, $3.17{\times}10^{-3}S/cm$ of ion conductivity was achieved at the $50{\mu}m$ thickness of PGE for EDLCs. And the electrochemical characteristics of unit cells were $2.69{\Omega}$ of DC-ESR, 28 F/g of specific capacitance, and 100% of coulombic efficiency.

Dynamic problem of Beams with Geometric nonlinear analysis research by the Collocation Method (선점법에 의한 기하학적 비선형을 고려한 보의 동적문제 해석 연구)

  • Park, Sung-Jin;Son, Jee-hyun
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.134-137
    • /
    • 2015
  • 본 연구에서는 다른 해법과 비교하여, 비선형 진동문제 선점법 적용성, 유효성을 확인하고, F.E.M 결과와의 응답 곡선에 비교하여, 비선형 동적응답문제의 선점법 적용성을 연구한다. 또한 축방향 관성은 세장비가 크기에 따라 그 영향이 어떻게 나타나는지 연구한다.

  • PDF

Preparation of PVdF/Fe3O4-GO (MGO) Composite Membrane by Using Electrospinning Technology and its Arsenic Removal Characteristics (전기방사법을 이용한 PVdF/Fe3O4-GO(MGO) 복합 분리막 제조 및 비소 제거 특성평가)

  • Jang, Wongi;Hou, Jian;Byun, Hongsik;Lee, Jae Yong
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.480-489
    • /
    • 2016
  • In this study, the PVdF/MGO composite nanofiber membranes (PMGs) introducing Iron oxide-Graphene oxide ($Fe_3O_4/GO$, Metallic graphene oxide; MGO) was prepared via electrospinng method and its arsenic removal characteristics were investigated. The thermal treatment was carried out to improve the mechanical strength of nanofiber membranes and then the results showed that of outstanding improvement effect. However, in case of PMGs, the decreasing tendency of mechanical strength was indicated as increasing MGO contents. From the results of pore-size analysis, it was confirmed that the porous structured membranes with 0.3 to $0.45{\mu}m$ were prepared. For the water treatment application, the water flux measurement was carried out. In particular, PMG2.0 sample showed about 70% improved water flux results ($153kg/m^2h$) compared to that of pure PVdF nanofiber membrane ($91kg/m^2h$) under the 0.3 bar condition. In addition, the PMGs have indicated the high removal rates of both As(III) and As(V) (up to 81% and 68%, respectively). Based on the adsorption isotherm analysis, the adsorption of As(III) and As(V) ions were both more suitable for the Freundlich. From all of results, it was concluded that PVdF/MGO composite nanofiber membranes could be utilized as a water treatment membrane and for the Arsenic removal applications.

Long Term Operation of Biological Hydrogen Production in Anaerobic Sequencing Batch Reactor (ASBR) (생물학적 수소생산을 위한 혐기성 연속 회분식 반응조(ASBR)의 장기운전 특성)

  • Jeong, Seong-Jin;Seo, Gyu-Tae;Lee, Taek-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Long term hydrogen production was investigated in an anaerobic sequencing batch reactor (ASBR) using mixed microflora. Glucose (about 8,250 mg/L) was used as a substrate for the ASBR operation under the condition of pH 5.5 and $37^{\circ}C$ with mixing at 150 rpm. The experiment was carried out over a period of 160 days. Hydrogen yield was 0.8mol $H_2/mol$ glucose with F/M ratio 2 at initial operation period. The hydrogen yield reached to maximum 2.6 mol $H_2/mol$ glucose at 80th day operation. However decreased hydrogen yield was observed after 80 days operation and eventually no hydrogen yield. Although well-known hydrogen producer Clostridium sp. was detected in the reactor by PCR-DGGE analysis, changed reactor operation was the major reason of the decreased hydrogen production, such as low F/M ratio of 0.5 and high propionic acid concentration 2,130 mg/L. Consequently the long period operation resulted in MLSS accumulation and then low F/M ration stimulating propionic acid formation which consumes hydrogen produced in the reactor.

Fundamental Study on the Characteristics of Antiwashout Underwater Concrete (수중 비분리 콘크리트의 특성에 대한 기초적 연구)

  • 김명식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.74-82
    • /
    • 1996
  • In this study, the characteristics of antiwashout underwater concrete according to the using types of admixture were experimentally investigated. Especially, the comparison on the performance of seven types(CO-A, B, C, D, E, F, G) of the manufactured admixtures was carried out in the same mixing condition and proportions. Based on the results of experiments, the conclusions were summarized as follows : (1) The slump flow on most of specimens except by CO-F type were progressed very well. (2) In most of products, the measured values of suspensions, pH's and air contents were lower than their reference values. However, CO-B, CO-F and CO-G types exceeded the reference ones in suspension and pH. (3) The time lags between initial and final setting were about three hours in most of tests, however, the maximum difference of total setting time was ten hours in comparing with the admixture types. The unit weights were mostly lower than $2300kg/m^3$ and the compressive strengths cured by salt water were about 80% of the ones by fresh water. (4) Finally, in spite of some problems, most of the manufactured admixtures may be performed well their functions in antiwashout under-water concrete if the using quantities are properly controlled by the site experiments.

  • PDF