• Title/Summary/Keyword: Eyecup

Search Result 3, Processing Time 0.018 seconds

Dynamic properties of the retinal neurons by using of the intracellular recording method (세포내 기록법으로써 검출한 망막 신경원의 동적 특성)

  • 이성종;정창섭;배선호
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.95-104
    • /
    • 1998
  • The dynamic properties of the 3rd-order neuron of the retina was investigated by using conventional intracellular recording techniques. Experiments were performed in the superfused retina-eyecup preparation of the channel catfish, Ictalurus punctatus. The cornea, iris, lens, and vitreous were removed by absorption with Kimwipe tissue under the dissection microscope thereby exposing the retina in a hemi -eyecup. The electrical signal was amplified by electrometer, viewed on oscilloscope. Regular signals from the cells were recorded on a penwriter and stored by data recorder and computer. Full-field, spot or annular light stimuli were generated on a computer monitor and focused onto the retina. Baclofen hyperpolarized the dark membrane potential, suppressed sustained component and enhanced transient component of the ON-sustained cell with a large transient component, but did not affect the surround antagonism of the cell. Baclofen selectively suppressed responses evoked by moving bar light stimuli on the ON-OFF transient cell. The results suggest that transient cells have directional selectivity in the inner retina. These dynamic properties of amacrine and ganglion cells were modulated by baclofen. Therefore, it is presumed that there is baclofen-induced directional selectivity in ON-OFF transient cells in the catfish retina.

  • PDF

Electrophysiological Analysis of GABA and Glycine Action on Neurons of the Catfish Retina

  • Bai, Sun-Ho;Jung, Chang-Sub;Lee, Sung-Jong
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.163-174
    • /
    • 1993
  • Vertebrate retinal neurons, like brain tracts farm complex synaptic relations in the enter and inner plexiform layers which ape equivalent to the central nervous system nuclei. The effects of $\gamma-aminobutyric$ acid(GABA) and glycine on retinal neurons were explored to discern the mechanisms of action of neurotransmitters. Experiments were performed in the superfused retina-eyecup preparation of the channel catfish, Ictalurus punctatus, using intracellular electrophysiological techniques. The roles of GABA and glycine as inhibitory neurotransmitters are well established in the vertebrate retina. But, we found that the depolarizing action of GABA and glycine on third-order neurons in the catfish retina. GABA and glycine appeared to act on retinal ueurons based on the observations that (1) effects on photoreceptors were not observed, (2) horizontal cells were either hyperpolarized $({\sim}33%)$ or depolarized $({\sim}67%)$, (3) bipolar cells were all hyperpolarized (4) amacrine and ganglion cells were either hyperpolarized $({\sim}37%)$ or depolarized $({\sim}63%)$, (5) GABA and glycine may be working to suppress presynaptic inhibition. The results suggest that depolarization of third-order neurons by GABA and glycine is due to at least two mechanisms; a direct postsynaptic effect and an indirect effect. Therefore, in the catfish retina, a mechanism of presynaptic inhibition or disinhibition including the direct postsynaptic effect may exist in the third-order neurons.

  • PDF

Study on the Fine Structure of Retina of Anterior Lateral Eyes in Pardosa astrigera L. Koch (Aranea: Lycosidae) (별늑대거미 (Pardosa astrigera L. Koch) 전측안(前側眼) 망막(綱膜)의 미세구조(微細構造)에 관한 연구)

  • Jeong, Moon-Jin;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.24 no.3
    • /
    • pp.1-9
    • /
    • 1994
  • Pardosa astrigera possessed eight eyes arranged in three rows on the frontal carapace. A pair of small anterior lateral eyes (ALE) flanked each side by an anterior median eyes (AME) lay along the anterior margin that was situated on the anterior row of clypeus. The anterior lateral eye was composed of cornea, vitreous body, and retina. Cornea was made up mainly of exocuticle lining the cuticle. Lens in anterior lateral eye was biconvex type which bulged into the cavity of the eyecup. Outer and inner central region of lens were approximately spherical with radius of curvature $5.6{\mu}m$ and $12.5{\mu}m$, respectly. Vitreous body formed a layer between the cuticular lens and retina. They formed biconcave shape. Retina of the anterior lateral eyes was composed of three types of cells: visual cells, glia cells, and pigment cells. The visual cells were unipolar neuron, as were the receptor of the posterior lateral eye. But cell body was unique to the anterior lateral eyes. They were giant cell, relatively a few in number, and under the layer of vitreous bodies. Each visual cell healed rhabdomeres for a short stretch beneath the cell body. Rhabdomes were irregulary pattern in retina and electron dense pigment granules scattered between the rhabdomes. Glia cell situated at the cell body of visual cell and glia cell process reached to rhabdomere portion. Below the rhabdome, tapetum were about $30{\mu}m$ distance from lens, which composed of 4-5 layers. It was about $25{\mu}m$ length that intermediate segment of distal portion of visual cell. Electron dense pigment granules between the intermediate segment were observed.

  • PDF