• Title/Summary/Keyword: Eye template

Search Result 48, Processing Time 0.028 seconds

A Realtime Tracking of Eye Region Using Deformable Template and Neural Network (가변템플릿과 신경회로망을 이용한 실시간 눈 영역의 추적)

  • Kim, Do-Hyung;Lee, Seon-Hwa;Lee, Hack-Man;Cha, Eui-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.247-250
    • /
    • 2000
  • 본 논문에서는 다양한 배경을 가지는 연속적인 얼굴 영상에서 실시간으로 눈의 위치를 자동적으로 추출하는 방법에 대하여 제시한다. 얼굴 요소 중에서 눈은 얼굴 인식 분야에 있어서 중요한 특징을 나타내는 주 요소로써 주로 히스토그램 분석과 색상 정보를 이용하여 눈 영역의 윤곽을 추출하는 방법이 제기되고 있다. 본 논문에서는 명암의 변화에도 비교적 적응력이 강한 이진화 기법을 사용하여 원영상을 이진화하고, 가변 템플릿(Deformable Template)방법을 사용하여 후보 영역을 추출한다. 이러한 후보영역들은 ART2 신경회로망을 이용하여 병합되며, 병합된 후보 영역들은 얼굴 요소의 기하학적 사전지식을 기반으로 검증되어, 시간에 따라 모양변화가 급변하는 눈 영역에 대한 실시간 추출을 가능하게 한다. 이상의 연구 결과는 교통사고 방지를 위한 눈의 졸림감지 등의 응용 시스템에 이용될 수 있다.

  • PDF

Facial Feature Tracking and Head Orientation-based Gaze Tracking

  • Ko, Jong-Gook;Kim, Kyungnam;Park, Seung-Ho;Kim, Jin-Young;Kim, Ki-Jung;Kim, Jung-Nyo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.11-14
    • /
    • 2000
  • In this paper, we propose a fast and practical head pose estimation scheme fur eye-head controlled human computer interface with non-constrained background. The method we propose uses complete graph matching from thresholded images and the two blocks showing the greatest similarity are selected as eyes, we also locate mouth and nostrils in turn using the eye location information and size information. The average computing time of the image(360*240) is within 0.2(sec) and we employ template matching method using angles between facial features for head pose estimation. It has been tested on several sequential facial images with different illuminating conditions and varied head poses, It returned quite a satisfactory performance in both speed and accuracy.

  • PDF

Robust Precise Iris Detection

  • Ali, Tauseef;Kim, In-Taek
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.965-966
    • /
    • 2008
  • In this paper, a robust method is developed to precisely detect iris of both eyes. The method does not put any restrictions on the background. The method is based on AdaBoost for face and eye candidate points detection. Candidate points are post-processed and an iris pair is selected using mean crossing function and a convolution template.

  • PDF

Real-Time Pupil Detection System Using PC Camera (PC 카메라를 이용한 실시간 동공 검출)

  • 조상규;황치규;황재정
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1184-1192
    • /
    • 2004
  • A real-time pupil detection system that detects the pupil movement from the real-time video data achieved by the visual light camera for general purpose personal computer is proposed. It is implemented with three steps; at first, face region is detected using the Haar-like feature detection scheme, and then eye region is detected within the face region using the template-based scheme. Finally, pupil movement is detected within the eye region by convolution of the horizontal and vertical histogram profiling and Gaussian filter. As results, we obtained more than 90% of the detection rate from 2375 simulation images and the data processing time is about 160㎳, that detects 7 times per second.

Pupil Detection using Hybrid Projection Function and Rank Order Filter (Hybrid Projection 함수와 Rank Order 필터를 이용한 눈동자 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.27-34
    • /
    • 2014
  • In this paper, we propose a pupil detection method using hybrid projection function and rank order filter. To reduce error to detect eyebrows as pupil, eyebrows are detected using hybrid projection function in face region and eye region is set to not include the eyebrows. In the eye region, potential pupil candidates are detected using rank order filter and then the positions of pupil candidates are corrected. The pupil candidates are grouped into pairs based on geometric constraints. A similarity measure is obtained for two eye of each pair using template matching, we select a pair with the smallest similarity measure as final two pupils. The experiments have been performed for 700 images of the BioID face database. The pupil detection rate is 92.4% and the proposed method improves about 21.5% over the existing method..

Face Detection Based on Distribution Map (분포맵에 기반한 얼굴 영역 검출)

  • Cho Han-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.11-22
    • /
    • 2006
  • Recently face detection has actively been researched due to its wide range of applications, such as personal identification and security systems. In this paper, a new face detection method based on the distribution map is proposed. Face-like regions are first extracted by applying the skin color map with the frequency to a color image and then, possible eye regions are determined by using the pupil color distribution map within the face-like regions. This enables the reduction of space for finding facial features. Eye candidates are detected by means of a template matching method using weighted window, which utilizes the correlation values of the luminance component and chrominance components as feature vectors. Finally, a cost function for mouth detection and location information between the facial features are applied to each pair of the eye candidates for face detection. Experimental results show that the proposed method can achieve a high performance.

  • PDF

Face Detection based on Pupil Color Distribution Maps with the Frequency under the Illumination Variance (빈도수를 고려한 눈동자색 분포맵에 기반한 조명 변화에 강건한 얼굴 검출 방법)

  • Cho, Han-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.225-232
    • /
    • 2009
  • In this paper, a new face detection method based on pupil color distribution maps with the frequency under the illumination variance is proposed. Face-like regions are first extracted by applying skin color distribution maps to a color image and then, they are reduced by using the standard deviation of chrominance components. In order to search for eye candidates effectively, the proposed method extracts eye-like regions from face-like regions by using pupil color distribution maps. Furthermore, the proposed method is able to detect eyes very well by segmenting the eye-like regions, based on a lighting compensation technique and a segmentation algorithm even though face regions are changed into dark-tone due to varying illumination conditions. Eye candidates are then detected by means of template matching method. Finally, face regions are detected by using the evaluation values of two eye candidates and a mouth. Experimental results show that the proposed method can achieve a high performance.

  • PDF

Biometric identification of Black Bengal goat: unique iris pattern matching system vs deep learning approach

  • Menalsh Laishram;Satyendra Nath Mandal;Avijit Haldar;Shubhajyoti Das;Santanu Bera;Rajarshi Samanta
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.980-989
    • /
    • 2023
  • Objective: Iris pattern recognition system is well developed and practiced in human, however, there is a scarcity of information on application of iris recognition system in animals at the field conditions where the major challenge is to capture a high-quality iris image from a constantly moving non-cooperative animal even when restrained properly. The aim of the study was to validate and identify Black Bengal goat biometrically to improve animal management in its traceability system. Methods: Forty-nine healthy, disease free, 3 months±6 days old female Black Bengal goats were randomly selected at the farmer's field. Eye images were captured from the left eye of an individual goat at 3, 6, 9, and 12 months of age using a specialized camera made for human iris scanning. iGoat software was used for matching the same individual goats at 3, 6, 9, and 12 months of ages. Resnet152V2 deep learning algorithm was further applied on same image sets to predict matching percentages using only captured eye images without extracting their iris features. Results: The matching threshold computed within and between goats was 55%. The accuracies of template matching of goats at 3, 6, 9, and 12 months of ages were recorded as 81.63%, 90.24%, 44.44%, and 16.66%, respectively. As the accuracies of matching the goats at 9 and 12 months of ages were low and below the minimum threshold matching percentage, this process of iris pattern matching was not acceptable. The validation accuracies of resnet152V2 deep learning model were found 82.49%, 92.68%, 77.17%, and 87.76% for identification of goat at 3, 6, 9, and 12 months of ages, respectively after training the model. Conclusion: This study strongly supported that deep learning method using eye images could be used as a signature for biometric identification of an individual goat.

Fake Face Detection and Falsification Detection System Based on Face Recognition (얼굴 인식 기반 위변장 감지 시스템)

  • Kim, Jun Young;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.9-17
    • /
    • 2015
  • Recently the need for advanced security technologies are increasing as the occurrence of intelligent crime is growing fastly. Previous liveness detection and fake face detection methods are required for the improvement of accuracy in order to be put to practical use. In this paper, we propose a new liveness detection method using pupil reflection, and new fake image detection using Adaboost detector. The proposed system detects eyes based on multi-scale Gabor feature vector in the first stage, The template matching plays a role in determining the allowed eye area. And then, the reflected image in the pupil is used to decide whether or not the captured image is live or not. Experimental results indicate that the proposed method is superior to the previous methods in the detection accuracy of fake images.

A Robust Approach to Automatic Iris Localization

  • Xu, Chengzhe;Ali, Tauseef;Kim, In-Taek
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.116-122
    • /
    • 2009
  • In this paper, a robust method is developed to locate the irises of both eyes. The method doesn't put any restrictions on the background. The method is based on the AdaBoost algorithm for face and eye candidate points detection. Candidate points are tuned such that two candidate points are exactly in the centers of the irises. Mean crossing function and convolution template are proposed to filter out candidate points and select the iris pair. The advantage of using this kind of hybrid method is that AdaBoost is robust to different illumination conditions and backgrounds. The tuning step improves the precision of iris localization while the convolution filter and mean crossing function reliably filter out candidate points and select the iris pair. The proposed structure is evaluated on three public databases, Bern, Yale and BioID. Extensive experimental results verified the robustness and accuracy of the proposed method. Using the Bern database, the performance of the proposed algorithm is also compared with some of the existing methods.