• Title/Summary/Keyword: Eye localization

Search Result 39, Processing Time 0.023 seconds

Realistic Avatar Face Generation Using Shading Mechanism (음영합성 기법을 이용한 실사형 아바타 얼굴 생성)

  • Park Yeon-Chool
    • Journal of Internet Computing and Services
    • /
    • v.5 no.5
    • /
    • pp.79-91
    • /
    • 2004
  • This paper proposes avatar face generation system that uses shading mechanism and facial features extraction method of facial recognition. Proposed system generates avatar face similar to human face automatically using facial features that extracted from a photo. And proposed system is an approach which compose shade and facial features. Thus, it has advantages that can make more realistic avatar face similar to human face. This paper proposes new eye localization method, facial features extraction method, classification method for minimizing retrieval time, image retrieval method by similarity measure, and realistic avatar face generation method by mapping facial features with shaded face pane.

  • PDF

Air-Ground Cooperating Robots: Applications and Challenges (공중-지상 로봇 협동 기술과 그 응용 및 연구 방향)

  • Yu, Seung-Eun;Kim, Dae-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.101-106
    • /
    • 2010
  • Researches on air-ground robot cooperating system has been made recently. The cooperation among homogeneous robots focused on the architecture of the system, quality and influence of the communication. In contrast, the cooperation among heterogeneous robots such as aerial vehicle and ground vehicle robots has not been much handled. There are a couple of main points for those air-ground cooperating robots. One is using UAV (Unmanned Aerial Vehicle) as an extra sensor of UGV (Unmanned Ground Vehicle). This kind of application is usually used in situations such as guiding UGV to an appropriate path which could be better determined from the eye in the sky as UAV. The other main application of air-ground cooperating robot system is the localization. By combining sensor information from both UAV and UGV, the robot system as a whole can localize a target object or find features in the environment with better performance than UGV or UAV alone. Although these applications are recently studied in many different ways and devices, there are still a lot of possibilities in the field of air-ground cooperating robot systems. We introduce those research fields in this paper.

News Focus - Today and Tomorrow of the Korea-made NPP, SMART (뉴스초점 - 한국 토종 원자로 'SMART"의 오늘과 내일)

  • Kim, Hak-Roh
    • Journal of the Korean Professional Engineers Association
    • /
    • v.44 no.6
    • /
    • pp.40-44
    • /
    • 2011
  • Nuclear energy in Korea began in 1958, when the Korea's atomic energy act was formulated and the relevant organizations were founded. Since then, notwithstanding the two catastrophe like TMI and Chernobyl accident, Korea made a wise decision to expand the peaceful uses of the nuclear energy as well as to localize the essential nuclear design technology of fuel and nuclear steam supply system. This decision resulted in the success of export of nuclear power plants as well as research reactor in 2010s. The Korea's nuclear policy, which well utilized 'international crisis in nuclear business' as 'opportunity of Korea to get. nuclear technology', is believed nice policy as a role model of nuclear new-comer countries. Based upon the success story of localization of nuclear technology, Korea had an eye for a niche market, which was a basis of development of SMART, Korea-made integral PWR. The operation of a SMART plant can sufficiently provide not only electricity but also fresh water for 100,000 residents. Last two years, Korea's nuclear industry team led by the Korea Atomic Energy Research Institute completed the standard design of SMART and applied to the Korea's regulatory body for standard design approval. Now the Korea's licensing authority is reviewing the design with the relevant documents, and the design team is doing its best to realize its hope to get the approval by the end of this year. From next year, the SMART business including construction and export will be explored by the KEPCO consortium.

  • PDF

Organ Induction by Combined Dose of bFGF and HGF in Animal Cap Assay of Early Xenopus laevis Embryos. (Xenopus laevis 초기 배의 동물극 분리배양에서 bFGF와 HGF 혼합처리에 의한 기관유도)

  • 진정효;윤춘식;이호선;박용욱;정선우
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.375-384
    • /
    • 2004
  • Fibroblast growth factors (FGFs) are known to induce multiple functions in early development, including mesoderm formation, gastrulation movement and antero-posterior patterning. The induction of mesoderm from Xenopus presumptive ectoderm and the combination effect on inducing organs of bFGF(basic FGF) and HGF (Hepatocyte Growth Factor) were studied. Explants were cultured in the combined solution for 3 days to normal embryo arrive at St. 43. These effects on combined dose were examined by histological experiment and by immunohistochemical method. The concentrations of growth factors were tested in 0, 0.5, 1, 10 and also tested in 50 ng/ml of bFGF, and 0, 1, 10, 50 and 100ng/ml of HGF respectively. The synergistic effects were seen in the combined-dose of bFGF and HGF rather than in single dose. Various organs were differentiated and highest inducing effects were seen at the combined concentration of 1 ng/ml of bFGF and 10ng/ml of HGF, and at the concentration 10ng/ml of bFGF and 1 ng/ml of HGF. The bFGF induces various organs from cultured animal cap explants and the effects are time and dose-dependent. HGF is also a potent mitogen for renal tubular cells and for mature hepatocytes in primary culture. Eyes were developed in high percentage at the combined concentration of 1 and 10ng/ml of bFGF, and 1 and 10 ng/ml of HGF. From the induced eye and normal embryonic eye, RPE65 was commonly detected by monoclonal antibodies 40All and 25F5 and the localization of RPE65 was seen by AP reaction.

Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review

  • Nagi, Ravleen;Aravinda, Konidena;Rakesh, N;Gupta, Rajesh;Pal, Ajay;Mann, Amrit Kaur
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.81-92
    • /
    • 2020
  • Intelligent systems(i.e., artificial intelligence), particularly deep learning, are machines able to mimic the cognitive functions of humans to perform tasks of problem-solving and learning. This field deals with computational models that can think and act intelligently, like the human brain, and construct algorithms that can learn from data to make predictions. Artificial intelligence is becoming important in radiology due to its ability to detect abnormalities in radiographic images that are unnoticed by the naked human eye. These systems have reduced radiologists' workload by rapidly recording and presenting data, and thereby monitoring the treatment response with a reduced risk of cognitive bias. Intelligent systems have an important role to play and could be used by dentists as an adjunct to other imaging modalities in making appropriate diagnoses and treatment plans. In the field of maxillofacial radiology, these systems have shown promise for the interpretation of complex images, accurate localization of landmarks, characterization of bone architecture, estimation of oral cancer risk, and the assessment of metastatic lymph nodes, periapical pathologies, and maxillary sinus pathologies. This review discusses the clinical applications and scope of intelligent systems such as machine learning, artificial intelligence, and deep learning programs in maxillofacial imaging.

A Study on the Differentiation and Acetylcholinesterase Activity of the Developing Rat Retina (발생중인 흰쥐 망막의 분화 및 Acetylcholinesterase 활성에 관한 연구)

  • Kim, Wan-Jong;Choi, Jun-Sub
    • Applied Microscopy
    • /
    • v.27 no.2
    • /
    • pp.131-144
    • /
    • 1997
  • The present study was carried out to investigate the processes of the ultrastructural differentiation and the acetylcholinesterase (AChE) activities of the developing rat retina. The results are as follows. The retina of fetal rat on the 13th day of gestation showed the early stage of differentiation. Briefly, there appeared dividing chromosomes, the plentiful free ribosomes, and the high ratio of nucleus to cytoplasm. The reaction products by AChE were localized at the membrane of endoplasmic reticulum and on the outer membrane of nucleus. Ultrastructures and AChE activities in the retina of the fetal rats on the 18th day of gestation were similar to those of the prior stages, except the appearence of rough endoplasmic reticulum and Golgi apparatus. According to the ultrastructural observations, the rat retina was still in immature state at birth, but the pigment epithelial cells were fully differentiated, e. g. the increase of melanin granules, the development of mitochondria and Golgi apparatus. The AChE activity was weekly detected. The differentiated retinal layers and the outer segment of photoreceptor cells were observed on the 7th postnatal day. And the pigment epithelium appeared to be fully differentiated. On the 14th postnatal day, rat retina were completely differentiated. In other words, the rat retina was characterized by the prominent outer segments, phagocytosed residues in the pigment epithelium, and the localization of reaction products by AChE in the synapses. In conclusion, the differentiation of rat retina is charaterized by the changes of cell shape, the increase of retinal layers, and the alterations of AChE activities. It seems that rat retina is to be functional from 2 weeks of birth onward, coinciding with the eye opening of the juvenile rats.

  • PDF

Loci of Orebodies, the Bupyeong Silver Deposits (부평은광상(富平銀鑛床)의 광체배태장소(鑛體胚胎場所))

  • Suh, Kyu-Sik;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.20 no.2
    • /
    • pp.97-106
    • /
    • 1987
  • The geology of the Bupyeong mine area is consisted of Precambrian Gyeonggi gneiss complex and Mesozoic igneous rocks; i.e., pyroclastic rocks, intrusive breccia, granite and felsic porphyries which were formed during a Jurassic to early Cretaceous resurgent caldera evolution. Granites are not observed on the surface and in the underground of the mine. Bupyeong silver deposits occur as stockworks of base metal sulfides- minor silver minerals-quartz - carbonate veinlets, hosted by pyroclastic rocks and intrusive breccia at the southwestern margin of the caldera. Silver occurs mainly as native silver, and other silver minerals, minor in quantity, are argentite, tetrahedrite-freibergite, pyrargyrite, polybasite, canfieldite and dyscrasite. The average grade of silver ore is about 180g/t Ag. Discrimination of silver ore from the country rocks depends largely on the chemical analyses of rock samples taken every two meters from tunnels, diamond-drilling cores and mining stopes, because silver minerals are hardly observed in the ore by crude eye, and silver orebodies do not properly coincide with the concentrated zone of base metal sulfides which were precipitated at the earlier stage than the stage of precipitation of native silver. General characteristics of the loci of the silver orebodies are as follows; (1) The host rocks of orebodies are pyroclastic rocks and intrusive breccia. (2) Many of the orebodies are distributed around Gyeonggi gneiss complex. Especially where the paleotopography of gneiss complex shows a gradual slope, the basal stratigraphic horizon of the pyroclastic rocks unconformably overlying the gneiss complex offered a favorable loci of high grade ore. (3) $N5^{\circ}W$ to $N15^{\circ}$ E-striking faults played an important role in the localization of the orebodies. (4) Conduits of intrusive breccia within the gneiss complex, through which the intrusive breccia intruded into the upper pyroclastic rocks, exist beneath most of the main orebodies. This suggests that the conduits of intrusive breccia served as channelways for the migration of ore fluids.

  • PDF

Augmented Reality to Localize Individual Organ in Surgical Procedure

  • Lee, Dongheon;Yi, Jin Wook;Hong, Jeeyoung;Chai, Young Jun;Kim, Hee Chan;Kong, Hyoun-Joong
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.394-401
    • /
    • 2018
  • Objectives: Augmented reality (AR) technology has become rapidly available and is suitable for various medical applications since it can provide effective visualization of intricate anatomical structures inside the human body. This paper describes the procedure to develop an AR app with Unity3D and Vuforia software development kit and publish it to a smartphone for the localization of critical tissues or organs that cannot be seen easily by the naked eye during surgery. Methods: In this study, Vuforia version 6.5 integrated with the Unity Editor was installed on a desktop computer and configured to develop the Android AR app for the visualization of internal organs. Three-dimensional segmented human organs were extracted from a computerized tomography file using Seg3D software, and overlaid on a target body surface through the developed app with an artificial marker. Results: To aid beginners in using the AR technology for medical applications, a 3D model of the thyroid and surrounding structures was created from a thyroid cancer patient's DICOM file, and was visualized on the neck of a medical training mannequin through the developed AR app. The individual organs, including the thyroid, trachea, carotid artery, jugular vein, and esophagus were localized by the surgeon's Android smartphone. Conclusions: Vuforia software can help even researchers, students, or surgeons who do not possess computer vision expertise to easily develop an AR app in a user-friendly manner and use it to visualize and localize critical internal organs without incision. It could allow AR technology to be extensively utilized for various medical applications.

Patient Setup Aid with Wireless CCTV System in Radiation Therapy (무선 CCTV 시스템을 이용한 환자 고정 보조기술의 개발)

  • Park, Yang-Kyun;Ha, Sung-Whan;Ye, Sung-Joon;Cho, Woong;Park, Jong-Min;Park, Suk-Won;Huh, Soon-Nyung
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.300-308
    • /
    • 2006
  • $\underline{Purpose}$: To develop a wireless CCTV system in semi-beam's eye view (BEV) to monitor daily patient setup in radiation therapy. $\underline{Materials\;and\;Methods}$: In order to get patient images in semi-BEV, CCTV cameras are installed in a custom-made acrylic applicator below the treatment head of a linear accelerator. The images from the cameras are transmitted via radio frequency signal (${\sim}2.4\;GHz$ and 10 mW RF output). An expected problem with this system is radio frequency interference, which is solved utilizing RF shielding with Cu foils and median filtering software. The images are analyzed by our custom-made software. In the software, three anatomical landmarks in the patient surface are indicated by a user, then automatically the 3 dimensional structures are obtained and registered by utilizing a localization procedure consisting mainly of stereo matching algorithm and Gauss-Newton optimization. This algorithm is applied to phantom images to investigate the setup accuracy. Respiratory gating system is also researched with real-time image processing. A line-laser marker projected on a patient's surface is extracted by binary image processing and the breath pattern is calculated and displayed in real-time. $\underline{Results}$: More than 80% of the camera noises from the linear accelerator are eliminated by wrapping the camera with copper foils. The accuracy of the localization procedure is found to be on the order of $1.5{\pm}0.7\;mm$ with a point phantom and sub-millimeters and degrees with a custom-made head/neck phantom. With line-laser marker, real-time respiratory monitoring is possible in the delay time of ${\sim}0.17\;sec$. $\underline{Conclusion}$: The wireless CCTV camera system is the novel tool which can monitor daily patient setups. The feasibility of respiratory gating system with the wireless CCTV is hopeful.