• 제목/요약/키워드: Eye Landmark Localization

검색결과 3건 처리시간 0.014초

딥 러닝 기반의 눈 랜드마크 위치 검출이 통합된 시선 방향 벡터 추정 네트워크 (Deep Learning-based Gaze Direction Vector Estimation Network Integrated with Eye Landmark Localization)

  • 주희영;고민수;송혁
    • 방송공학회논문지
    • /
    • 제26권6호
    • /
    • pp.748-757
    • /
    • 2021
  • 본 논문은 눈 랜드마크 위치 검출과 시선 방향 벡터 추정이 하나의 딥러닝 네트워크로 통합된 시선 추정 네트워크를 제안한다. 제안하는 네트워크는 Stacked Hourglass Network를 백본(Backbone) 구조로 이용하며, 크게 랜드마크 검출기, 특징 맵 추출기, 시선 방향 추정기라는 세 개의 부분(Part)으로 구성되어 있다. 랜드마크 검출기에서는 눈 랜드마크 50개 포인트의 좌표를 추정하며, 특징 맵 추출기에서는 시선 방향 추정을 위한 눈 이미지의 특징 맵을 생성한다. 그리고 시선 방향 추정기에서는 각 출력 결과를 조합하여 최종 시선 방향 벡터를 추정한다. 제안하는 네트워크는 UnityEyes 데이터셋을 통해 생성된 가상의 합성 눈 이미지와 랜드마크 좌표 데이터를 이용하여 학습하였으며, 성능 평가는 실제 사람의 눈 이미지로 구성된 MPIIGaze 데이터셋을 이용하였다. 실험을 통해 시선 추정 오차는 3.9°의 성능을 보였으며, 네트워크의 추정 속도는 42 FPS(Frame per second)로 측정되었다.

유비쿼터스 이동로봇용 천장 인공표식을 이용한 비젼기반 자기위치인식법 (Vision-based Self Localization Using Ceiling Artificial Landmark for Ubiquitous Mobile Robot)

  • 이주상;임영철;유영재
    • 한국지능시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.560-566
    • /
    • 2005
  • 본 논문은 유비쿼터스 이동로봇의 자기위치인식에 적용되는 비젼시스템의 왜곡된 영상을 보정하기 위한 실용적인 방법을 제안하다. 이동로봇에서 자기위치인식은 필수적인 요소이며 카메라 비젼시스템을 이용하여 처리 가능하다. 자기위치인식에서 비젼시스템은 넓은 시야를 확보하기 위해 어안렌즈를 이용하는데, 이는 영상의 왜곡을 발생한다. 또한 이동로봇은 지속적인 움직임을 가지므로 빠른 시간 내에 영상을 처리하여 자기위치를 인식해야 한다. 따라서 이동로봇에 적용 가능한 실용적인 영상왜곡 보정기법을 제안하고 실험을 통하여 성능을 검증한다.

딥러닝 기반의 눈 랜드마크 위치 검출이 통합된 시선 방향 벡터 추정 네트워크 (Deep Learning-based Gaze Direction Vector Estimation Network Integrated with Eye Landmark Localization)

  • 주희영;고민수;송혁
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.180-182
    • /
    • 2021
  • 본 논문은 눈 랜드마크 위치 검출과 시선 방향 벡터 추정이 하나의 딥러닝 네트워크로 통합된 시선 추정 네트워크를 제안한다. 제안하는 네트워크는 Stacked Hourglass Network[1]를 백본(Backbone) 구조로 이용하며, 크게 랜드마크 검출기, 특징 맵 추출기, 시선 방향 추정기라는 세 개의 부분으로 구성되어 있다. 랜드마크 검출기에서는 눈 랜드마크 50개 포인트의 좌표를 추정하며, 특징 맵 추출기에서는 시선 방향 추정을 위한 눈 이미지의 특징 맵을 생성한다. 그리고 시선 방향 추정기에서는 각 출력 결과를 조합하고 이를 통해 최종 시선 방향 벡터를 추정한다. 제안하는 네트워크는 UnityEyes[2] 데이터셋을 통해 생성된 가상의 합성 눈 이미지와 랜드마크 좌표 데이터를 이용하여 학습하였으며, 성능 평가는 실제 사람의 눈 이미지로 구성된 MPIIGaze[3] 데이터 셋을 이용하였다. 실험을 통해 시선 추정 오차는 0.0396 MSE(Mean Square Error)의 성능을 보였으며, 네트워크의 추정 속도는 42 FPS(Frame Per Second)를 나타내었다.

  • PDF