• Title/Summary/Keyword: Extrusion type

Search Result 172, Processing Time 0.026 seconds

Cross-section Morphology and Surface Roughness of an Article Manufactured by Material Extrusion-type 3D Printing according to the Thermal Conductivity of the Material

  • Woo, In Young;Kim, Do Yeon;Kang, Hong Pil;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.46-50
    • /
    • 2020
  • Material extrusion (ME)-type 3D printing is the most popular among the 3D printing processes. In this study, the cross-section morphologies of ME-type 3D printing manufactured specimens were observed with respect to the thermal properties of the material. The cross-section morphology of a specimen is related to the deposition strength, and the outside profile of the cross-section is related to the surface roughness. The filaments used in this study, with different thermal conductivities, were the acrylonitrile-butadiene-styrene (ABS), the high impact polystyrene (HIPS), the glycol-modified polyethylene terephthalate (PETG), and the polylactic acid (PLA). The cross-sections and the surfaces of the 3D manufactured specimens were examined. In ME-type 3D printing, the filaments are extruded through a nozzle and they form a layer. These layers rapidly solidify and as a result, they become a product. The thermal conductivity of the material influences the cooling and solidification of the layers, and subsequently the cross-section morphology and the surface roughness.

Texture Properties of Acorn Starch Gels -Puncture test, Back extrusion test and Retrogradation test- (도토리묵의 텍스쳐 특성 -관통시험, 역압출시험, 노화특성시험-)

  • 김영아
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.2
    • /
    • pp.173-178
    • /
    • 1991
  • The rheological properties of acorn crude starch gel and refined starch gel were investigated by puncture test, back-extrusion test and retrogradation test. Puncture test was a useful method to compare the different gel type and concentration, and to calculate the compression and shear coefficient. Maximum extrustion force and adhesiveness were also examined by performing back-extrustion test. The retrogradation rate was analysed by Avrami equation in retrogradation test.

  • PDF

Extrusion of Pellet-type Adsorbents Employed with Alum Sludge and H2S Removal Performance (알럼 슬러지를 이용한 입상흡착제 압출 및 황화수소 제거 성능)

  • Park, Nayoung;Bae, Junghyun;Lee, Choul Ho;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.121-127
    • /
    • 2013
  • The objective of this study is optimization of extrusion process for preparation of pellet-type adsorbents employed with alum sludge. Effects of water content and methyl cellulose as a binder on the possibility of extrusion and physical properties of pellet-type adsorbents were investigated. The physical characteristics of the pellet-type adsorbents were studied using nitrogen adsorption and compression strength. With a ratio of water to sludge, 63/100, the adsorbent was well extruded with a cylindrical form and the compressive strength was the highest. With increasing methyl cellulose content, the compressive strength of pellet-type adsorbent could be improved, but the specific surface area decreased. The breakthrough time of the hydrogen sulfide could be increased significantly through calcination and the breakthrough capacity reached to 1,700 mg/g, which seems to be due to increase of surface area during calcination.

Properties of Barley for Extrusion Processing (보리의 Extrusion 가공적성)

  • Lee, Dong-Sun;Rha, Cho-Kyun;Suh, Kee-Bong
    • Applied Biological Chemistry
    • /
    • v.25 no.3
    • /
    • pp.119-125
    • /
    • 1982
  • Using piston type extruder, barley flour was extruded at various processing conditions, The used variables were three shear rates (apparent shear rate 118, 534, $1169sec^{-1}$), four extrusion temperatures(90, 120, 150, $180^{\circ}C$) and three moisture contents (15, 25, 35%). The rheological properties and the extrudate quality were monitored in extrusion. Barley flour showed pseudoplastic behavior having average power law index 0.28 in used shear rate range. When viewed from general appearance, die swell, density, water uptake, rehydration swell and gelatinization degree of extrudate, $25{\sim}35%$ moisture and $120^{\circ}C$ temperature was suitable processing condition for noodle-like product, and 25% moisture and $150^{\circ}C$ temperature was good for snack or flake product. Moisture content of the extrudate can be pretty well estimated from energy balance at higher temperature and higher moisture content.

  • PDF

Development of preheating technology on energy-saving extrusion dies applying infrared lamp (근적외선 램프를 적용한 에너지 절감형 압출금형 예열기술 개발)

  • Min, Kyung-Ho;Bae, Seong-Hwan;Choi, Ho-Joon;Shin, Young-Chul
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • The aim of this study is to develop the dies oven for energy-saving during the pre-heated process of extrusion dies. Applying high-efficiency near-infrared heater, single cell type dies oven was developed as a substitute for traditional chest type oven. Therefore the dies is individually heated uniformly to operation temperature so rapidly. By using the developed dies oven, electric-energy consumption of preheating extrusion dies reduced up to 30% and the waiting time in the oven also minimized up to 90min. In addition, the results have shown that it is possible to accurately control the dies temperature for improving the quality of extruded profile and to minimize die bearing oxidation and nitride layer degradation responsible for surface defects on the profile and shorter die life.

Enhancing Electrical Properties of N-type Bismuth Telluride Alloys through Graphene Oxide Incorporation in Extrusion 3D Printing

  • Jinhee Bae;Seungki Jo ;Kyung Tae Kim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.318-323
    • /
    • 2023
  • The thermoelectric effect, which converts waste heat into electricity, holds promise as a renewable energy technology. Recently, bismuth telluride (Bi2Te3)-based alloys are being recognized as important materials for practical applications in the temperature range from room temperature to 500 K. However, conventional sintering processes impose limitations on shape-changeable and tailorable Bi2Te3 materials. To overcome these issues, three-dimensional (3D) printing (additive manufacturing) is being adopted. Although some research results have been reported, relatively few studies on 3D printed thermoelectric materials are being carried out. In this study, we utilize extrusion 3D printing to manufacture n-type Bi1.7Sb0.3Te3 (N-BST). The ink is produced without using organic binders, which could negatively influence its thermoelectric properties. Furthermore, we introduce graphene oxide (GO) at the crystal interface to enhance the electrical properties. The formed N-BST composites exhibit significantly improved electrical conductivity and a higher Seebeck coefficient as the GO content increases. Therefore, we propose that the combination of the extrusion 3D printing process (Direct Ink Writing, DIW) and the incorporation of GO into N-BST offers a convenient and effective approach for achieving higher thermoelectric efficiency.

A Case Study on the Release Characteristic and Removal Efficiency of Vinyl Chloride in the Poly Vinyl Chloride Extrusion Process (PVC압출공정의 염화비닐 발생특성과 작업환경개선에 관한 사례연구)

  • Park, Dong Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.1
    • /
    • pp.91-98
    • /
    • 1993
  • This study was carried out to investigate characteristic of vinyl chloride emissioned from poly vinyl chloride extrusion process and to evaluate the efficiency of local exhaust ventilation system. Before local ventilation facility was constructed in poly vinyl chloride extrusion process, the average worker exposure to vinyl chloride was 3.15 ppm, which exceeded Threshold Limit Value of American Conference of Gorvernmental Industrial Hygienists (ACGIH-TLV), 1 ppm. lt is possible that vinyl chloride residues in the poly vinyl chloride resin was released or degased due to extrusion heat. The larger the width of vinyl tube become, the higher worker exposure to vinyl chloride was. It is estimated that vinyl chloride from vinyl chloride resin increased as amount of poly vinyl chloride resin extruded in the extrusion process increased. Canopy hood was an appropriate type for poly vinyl chloride resin extrusion process. This local exhaust ventilation has fan static pressure of 7.65 inch wg($190mmH_2O$, total volumetric flowlate of 4,796 CFM ($135.8m^3$/min) and fan power requirement of 12 hp (8.952 Kw). After this local exhaust ventilation was constructed there, the average concentration of worker exposure to vinyl chloride was reduced to be 0.46 ppm, which was below the Threshold Limit Value, 1 ppm. Also, the removal efficiency rate of vinyl chloride attained by local exhaust ventilation was 85.3%. It was a statistically significant (p<0.01).

  • PDF

Analysis of Microstructures and Mechanical Properties of Billet and Extrudate according to Heat Treatment for the Extrusion of 7075 alloy (7075 합금의 압출에서 원소재 빌렛과 압출재의 열처리에 따른 미세조직 및 기계적 특성 분석)

  • Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.5
    • /
    • pp.232-238
    • /
    • 2020
  • Heating experiments using the 7075 aluminum alloy in the state of billet and extrudate have been performed to investigate the pertinent ranges of working temperatures and holding times for the application to the various automobile parts. The 7075 specimens from raw billet of 152 mm in diameter and 400 mm in length prior to extrusion were used for heating with a holding time of 10 minutes at temperatures between 380℃ and 550℃. Then, an extrusion process using the billet has been fulfilled at 380℃ with extrusion speed of 0.8 mm/min to get an plate-type extrudate of 75 mm in width and 4.2 mm in thickness. The samples from the extrudate were subjected to heating experiments at temperatures between 380℃ and 440℃ with holding times such as 10 min, 30 min, 60 min and 120 min at each heating temperature. The microstructures were investigated on the optical and EBSD micrographs. The hardness measurement and the tensile test have been performed to investigate the effect of the heat treatment on the mechanical property. The results showed for the 7075 extrusion process that the safe heating of billet can be performed below 450℃ and the extrusion can be done safely up to 400℃.

Accidental injury of the inferior alveolar nerve due to the extrusion of calcium hydroxide in endodontic treatment: a case report

  • Shin, Yooseok;Roh, Byoung-Duck;Kim, Yemi;Kim, Taehyeon;Kim, Hyungjun
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.63-67
    • /
    • 2016
  • During clinical endodontic treatment, we often find radiopaque filling material beyond the root apex. Accidental extrusion of calcium hydroxide could cause the injury of inferior alveolar nerve, such as paresthesia or continuous inflammatory response. This case report presents the extrusion of calcium hydroxide and treatment procedures including surgical intervention. A 48 yr old female patient experienced Calcipex II extrusion in to the inferior alveolar canal on left mandibular area during endodontic treatment. After completion of endodontic treatment on left mandibular first molar, surgical intervention was planned under general anesthesia. After cortical bone osteotomy and debridement, neuroma resection and neurorrhaphy was performed, and prognosis was observed. But no improvement in sensory nerve was seen following surgical intervention after 20 mon. A clinician should be aware of extrusion of intracanal medicaments and the possibility of damage on inferior alveolar canal. Injectable type of calcium hydroxide should be applied with care for preventing nerve injury. The alternative delivery method such as lentulo spiral was suggested on the posterior mandibular molar.