• Title/Summary/Keyword: Extrusion condition

Search Result 181, Processing Time 0.025 seconds

Studies on Microbial Penicillin Amidase (II) Characteristics and the Reactor Performance of Whole Cell Immobilized Penicillin Amidase of Escherichia coli (미생물 페니실린 아미다제에 관한 연구 (II) E. coli의 균체 고정화 페니실린 아미다제의 특성 및 반응조에 관한 연구)

  • Seong, Baik-Lin;Kim, Bong-Hee;Mheen, Tae-Iek;Moon H. Han
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.1
    • /
    • pp.35-44
    • /
    • 1981
  • Whole cell penicillin amidase of Escherichia coli was immobilized by entrapment in gelatin followed by extrusion and crosslinking with glutaraldehyde. The immobilized engyme preparation demonstrated the recovery yield of activity up to 70% and good stability during storage and operation. The half life of activity decay during the operation was estimated to be about 50 days. The optimum pH and temperature for both of immobilized and soluble enzyme are 8.5 and 5$0^{\circ}C$, respectively. No significant change was demonstrated in the effect of pH and temperature, but the increase in heat stability at high temperature was observed in the case of the immobilized enzyme. It was found that the plug flow reactor could be operated favorably since the pH drop along the column path due to tile reaction product was minimized by employing substrate solution with moderate buffer strength. The optimal condition of reactor operation was discussed with regard to the effect of substrate concentration and the residence time on the conversion efficiency and productivity.

  • PDF

Effect of Food Simulants on the Properties of LDPE-Nano TiO2 Composite Film in Food Contact Environment (식품 접촉 모사 환경에서 식품유사용매의 LDPE-나노 TiO2 복합필름 재질특성 영향 평가)

  • Lee, Wooseok;Choi, Jae Chun;Park, Se-jong;Kim, MeeKyung;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.3
    • /
    • pp.125-132
    • /
    • 2017
  • The effect of food simulants on properties and light barrier function of LDPE-nano $TiO_2$ composite film has been investigated. LDPE-nano $TiO_2$ composite films were prepared with 5.0wt% $TiO_2$ content by melt-extrusion. To simulate food contact environment, according to KFDA standards and specifications for food utensils, containers and packages, food simulants were selected with deionized water, 50% ethanol, 4% acetic acid and n-heptane and composite films were immersed in each food simulant at $70^{\circ}C$, 30 min except n-heptane ($25^{\circ}C$, 60 min). A variety of material properties, including crystallinity, chemical bonds, surface morphology, mechanical, oxygen barrier and optical properties, of LDPE-nano $TiO_2$ composite film were examined with and without the food simulants treatment. As a result, under regulated migration condition, LDPE-nano $TiO_2$ composite showed extremely stable in all properties tested in the study in contact with food simulants indicating that $TiO_2$ nanoparticles are physicochemically stable and quite compatible with LDPE. Results enable us to anticipate migration of $TiO_2$ will probably not occur. To evaluate influence of migration of $TiO_2$ on food stuffs, their color, pH and acidity were observed as well.

Effect of Si Particle Size on the Thermal Properties of Hyper-eutectic Al-Si Alloys (과공정 Al-Si 합금의 열팽창 특성에 미치는 Si 입자 크기의 영향)

  • Kim, Chul-Hyun;Joo, Dae-Heon;Kim, Myung-Ho;Yoon, Eui- Pak;Yoon, Woo-Young;Kim, Kwon-Hee
    • Journal of Korea Foundry Society
    • /
    • v.23 no.4
    • /
    • pp.195-203
    • /
    • 2003
  • Hyper-eutectic Al-Si alloy is used much to automatic parts and material for the electronic parts because of the low coefficient of thermal expansion, superior thermal stability and superior wear resistance. In this work, A390 alloy specimens were fabricated for control of the Si particle size by various processes, such as spray-casting, permanent mold-casting and squeeze-casting. To minimize the effect of microporosity of the specimens, hot extrusion was carried out under equal condition. Each specimens were evaluated tensile properties at room temperature and thermal expansion properties in the range from room temperature to 400$^{\circ}C$. Ultimate tensile strength and elongation of the spray-cast and extruded specimens which have fine and well distributed Si particles were improved greatly compare to the permanent mold-cast and extruded ones. Specimens which have finer Si particles showed higher ultimate tensile strength and elongation than those having large Si particle size, and coefficient of thermal expansion of the specimens increased linearly with Si particle size. In case of the repeated high temperature exposures, thermal expansion properties of the spray-cast and extruded specimens were found to be more stable than those of the others due to the effect of fine and well distributed Si particles.

FEA of Pipe Rolling Process Using Planetary Rolling Mill for Stainless Steel (유성압연기를 사용한 스테인리스 강관 압연공정의 유한요소해석)

  • Lee, Jung-Kil;Kim, Kwan-Woo;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.244-251
    • /
    • 2011
  • Pipe rolling process using the planetary rolling mill for AISI 304 stainless steel has been studied by using finite element method. Mannesmann method using three-roll is applied to this rolling process. Commonly, rolling process has started from the cold working and finished to the hot working. This rolling process has more advantage that make reduction of process and cost than existing extrusion process. This process includes various and complex process parameters. Each of the process parameters affects forming result. Therefore, all of the process parameters should be considered in FEA. In this study, possibility and productivity of forming pipe for AISI 304 stainless steel had been investigated. Also, preheating process and variations of rotation velocity and product thickness were considered in FEA. Rolling process for AISI 304 stainless steel pipe was successfully simulated and it should be useful to determine optimal rolling condition.

Tensile Behavior Characteristics of CANDU Pressure Tube Material Degraded by Neutron Irradiations (중수로 압력관 재료의 조사 열화에 따른 인장거동 특성)

  • An, Sang-Bok;Kim, Yeong-Seok;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.188-195
    • /
    • 2002
  • To investigate the degradation of mechanical properties induced mainly by neutron irradiation, the tensile tests were conducted from room temperature to 300\\`c using the irradiated and the unirradiated Zr-2.5Nb pressure tube materials. The irradiated longitudinal and transverse specimens were collected from the coolant inlet, middle, and outlet parts of M-11 tube which had been operated in Wolsung CANDU Unit-1 and exposed to different operating temperatures and irradiation fluences. The different tensile behavior was characterized not by the fluences of irradiation but by the tensile loading direction. The transverse specimen showed the higher strength and lower elongation than those of the longitudinal one. It was believed that these phenomena resulted from the microstructure anisotropy caused by the extrusion process. The increased strength hardening and decreased elongation embrittlement of the irradiated material were compard to those of the unirradiated one. While the tensile strength of the inlet was higher than that of the outlet, the elongation of the inlet was lower than that of outlet. Considering the operation condition, it was proposed that the operating temperature could be a more effective parameter than the irradiation fluence for long-time life. Through the TEM observation, it was found that while the a-type dislocation density was increased, the c-type dislocation was not changed in the irradiated. The fact that the higher dislocation density was sequentially distributed over the inlet, the middle, and the outlet parts was consistent with the distribution of the tensile strength.

Multidisciplinary approach for a patient with teeth loss and pathologic teeth migration: case report (치아 상실 및 치아의 병적 이동이 일어난 환자의 다과간 협력진료 증례)

  • Gang, Sung-Nam;Kim, Hyung-Moon;Lee, Ji-Young;Son, Mee-Kyoung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.4
    • /
    • pp.329-338
    • /
    • 2014
  • Patients who lost molars from dental caries or periodontitis have difficulty in maintaining their vertical dimension because their incisors and premolars also show vertical tooth movement. Missing posterior molars leads to occlusal interference and collapse of occlusal plane due to extrusion of opposite teeth and tipping of adjacent teeth. When this condition persists over long time, mandible moves forward, so it causes mobility and labioversion of upper incisors. This progress cannot be stopped spontaneously and the situation gets worse and worse. Therefore, for a patient with pathologic teeth migration caused by chronic periodontitis, interdisciplinary approach which is including periodontal treatment, orthodontic teeth alignment and prosthetic restoration of missing molars is required. This case report shows successful multidisciplinary approach to a patient who lost vertical dimension due to severe dental caries and periodontitis.

Roles of Putative Sodium-Hydrogen Antiporter (SHA) Genes in S. coelicolor A3(2) Culture with pH Variation

  • Kim, Yoon-Jung;Moon, Myung-Hee;Lee, Jae-Sun;Hong, Soon-Kwang;Chang, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.979-987
    • /
    • 2011
  • Culture pH change has some important roles in signal transduction and secondary metabolism. We have already reported that acidic pH shock enhanced actinorhodin production in Streptomyces coelicolor. Among many potential governing factors on pH variation, the putative $Na^+/H^+$ antiporter (sha) genes in S. coelicolor have been investigated in this study to elucidate the association of the sha on pH variation and secondary metabolism. Through the transcriptional analysis and overexpression experiments on 8 sha genes, we observed that most of the sha expressions were promoted by pH shock, and in the opposite way the pH changes and actinorhodin production were enhanced by the overexpression of each sha. We also confirmed that sha8 especially has a main role in maintaining cell viability and pH homeostasis through $Na^+$ extrusion, in salt effect experiment under the alkaline medium condition by deleting sha8. Moreover, this gene was observed to have a function of pH recovery after pH variation such as the pH shock, being able to cause the sporulation. However, actinorhodin production was not induced by the only pH recovery. The sha8 gene could confer on the host cell the ability to recover pH to the neutral level after pH variation like a pH drop. Sporulation was closely associated with this pH recovery caused by the action of sha8, whereas actinorhodin production was not due to such pH variation patterns alone.

Damage Mechanism of Drift Ice Impact

  • Gong, Li;Wang, Zhonghui;Li, Yaxian;Jin, Chunling;Wang, Jing
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1350-1364
    • /
    • 2019
  • The ice damage occurs frequently in cold and dry region of western China in winter ice period and spring thaw period. In the drift ice condition, it is easy to form different extrusion force or impact force to damage tunnel lining, causing project failure. The failure project could not arrive the original planning and construction goal, giving rise to the water allocation pressure which influences diversion irrigation and farming production in spring. This study conducts the theoretical study on contact-impact algorithm of drift ices crashing diversion tunnel based on the symmetric penalty function in finite element theory. ANSYS/LS-DYNA is adopted as the platform to establish tunnel model and drift ice model. LS-DYNA SOLVER is used as the solver and LS-PREPOST is used to do post-processing, analyzing the damage degrees of drift ices on tunnel. Constructing physical model in the experiment to verify and reveal the impact damage mechanism of drift ices on diversion tunnel. The software simulation results and the experiment results show that tunnel lining surface will form varying degree deformation and failure when drift ices crash tunnel lining on different velocity, different plan size and different thickness of drift ice. The researches also show that there are damages of drift ice impact force on tunnel lining in the thawing period in cold and dry region. By long time water scouring, the tunnel lining surfaces are broken and falling off which breaks the strength and stability of the structure.

Oxygen Permeation Properties of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) Membranes under Different Condition of Feed Side and Permeate Side (공급 측과 투과 측 조건에 따른 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) 관형 분리막의 산소투과 특성)

  • Kim, Jong-Pyo;Park, Jung-Hoon;Lee, Yong-Taek;Choi, Young-Jong
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.155-162
    • /
    • 2011
  • Dense tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ (BSCF) membranes were prepared by extrusion technique. The phase structure of the $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membranes was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Relative density of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ tubular membrane was 94.10%. Oxygen permeation was measured at difference operating condition of feed side and permeate side in the temperature range from 700 to $950^{\circ}C$. The oxygen permeation flux of dense tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membrane reached maximum 1.37 mL/$min{\cdot}cm^2$ at $900^{\circ}C$ exposed to ambient air (feed side) and vacuum pump (permeate side).

Characteristics of the Dependent Variable due to Changes in the Conditions of the Independent Variable During the Producing of Collets Added with Rice and Dried Shrimp by Single Extruder (Single Extruder를 이용한 마른새우첨가 쌀 Collets 제조 시 독립변수의 조건변화에 따른 종속변수의 특성)

  • JE, Hae-Soo;YOON, Moon-Joo;LEE, Jae-Dong;KANG, Kyung-Hun;PARK, Si-Young;PARK, Jin-Hyo;KIM, Jeong-Gyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1352-1363
    • /
    • 2015
  • This study was carried out to investigate the characteristics of the dependent variables depending on the condition changes of independent variable of the operation and the material during the production of collets added with rice and dried shrimp by using single extruder to utilize as basic data for the manufacture of extrusion collets. A total of 7 independent variables were set up as a raw, 20, 40 and 60 mesh for the powder particle size of rice; 12, 14, 16 and 18% for the moisture content of rice; 2, 4, 6 and 8% for the addition amount of dried shrimp; 90, 95, 100 and $110^{\circ}C$ for the barrel temperature; 210, 280 and 340 rpm for the screw speed; 4, 6, 8 and 10 mm for the discharge port diameter; 30, 40, 50 and 60 kg/h for the input amount of the mixed material. The characteristics of the dependent variables including puffing ratio, moisture content, lightness, uniformity, productivity of collets was to be studied by changing the conditions of the independent variables. As a results of this study, 20 mesh of powder particle size of rice, 14% of moisture content of rice, 4% of addition amount of dried shrimp, $100^{\circ}C$ of barrel temperature, 280 rpm of screw speed, 6 mm of discharge port diameter and 50 kg/h of input amount of mixed material were found to be the most preferable over other independent variables for the production of extrusion collets. In conclusion, it is necessary to set the independent variable in order to produce the high quality collets added with the rice as the main raw material and dried shrimp as the sub-materials.