• Title/Summary/Keyword: Extrusion Temperature

Search Result 474, Processing Time 0.023 seconds

Effect of extrusion process variable on physicochemical properties of extruded rice snack with mealworm (압출성형 공정변수가 갈색거저리 애벌레(mealworm) 첨가 쌀 팽화 스낵의 이화학적 특성에 미치는 영향)

  • Cho, Sun Young;Jeong, Da Hye;Ryu, Gi Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.444-452
    • /
    • 2017
  • This study aims to investigate the physicochemical properties of the extruded rice snack with added the containing mealworm. Adding the mealworm addition enhanced protein and unsaturated fatty acid contents, which are insufficient in rice. As the extrusion process variables, the death temperatures and moisture content were set to at respective 130 and $140^{\circ}C$, and 20 and 25%, respectively. The expansion ratio increased as with death temperature, whereas the increased moisture content decreased. The nitrogen solubility index and protein digestibility index increased with the added mealworm content of mealworm increased. As mealworm content and death temperature, and moisture content increased, DPPH radical scavenging activity significantly increased but the rancidity decreased. As the result of this study, confirmed that the addition of mealworm to the extruded rice snack was the confirmed as the effective process to improve nutrition, and antioxidation. Also, death temperature and moisture content have an effect on softened the texture of extruded rice snack.

Physicohemical Properties of Extruded Rice Flours and a Wheat Flour Substitute for Cookie Application (압출쌀가루의 이화학적 특성 및 밀가루 대체 쿠키 특성)

  • We, Gyoung Jin;Lee, Inae;Kang, Tae-Young;Min, Joo-Hong;Kang, Wie-Soo;Ko, Sanghoon
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.404-412
    • /
    • 2011
  • The purpose of this study is to prepare extruded rice flours suitable for baking rice cookies. The extruded rice flours were prepared at 100 and 130$^{\circ}C$ temperature and 25 and 27% moisture content in a co-rotating twin screw extruder. The rice extrudates were dried at 100$^{\circ}C$ for 18 hr and subsequently ground into the fine flour. Characteristics of the extruded rice flours were examined by rapid visco analysis, hydration property analysis, differential scanning calorimetry (DSC), and in vitro digestion test. Water absorption, solubility, and swelling power of all extruded rice flours were higher than those of native rice flour. DSC analysis showed that native rice flour had a peak at about 65$^{\circ}C$ while all extruded rice flours did not show any peaks since they were already gelatinized during the extrusion proess. Viscosity of the extruded rice flours decreased with increasing temperature and lowering moisture content in the extrusion proess. The extruded rice flours prepared at 130$^{\circ}C$ exhibited lower viscosity than those prepared at 100$^{\circ}C$. The operating temperature of the extrusion proess was critical for the starch digestion in vitro. The extruded rice flours prepared at 130$^{\circ}C$ showed a rapid decrease in digestible starch content while an increased level of slowly digestible starch content was observed compared to those treated at 100$^{\circ}C$ in the extruder. Cookies were prepared with a mixture of wheat flour and extruded rice flours at the ratio of 7 to 3. The cookies made with the extruded rice flours had lower spread factor and darker yellow color than those prepared with wheat flour only. Hardness of the extruded rice flour-added cookies was similar to that of the wheat flour cookie whereas their overall acceptance was better. Therefore the rice cookies partially supplemented with extruded rice flours may have a potential as early childhood foods which require soft texture and allergy reduction.

Effect of the Processing History on the Morphology and Properties of the Ternary Blends of Nylon 6, a Thermotropic Liquid Crystalline Polymer, and a Functionalized Polypropylene

  • Yongsok Seo;Kim, Hyong-Jun;Kim, Byeongyeol;Hong, Soon-Man;Hwang, Seung-Sang;Kim, Kwang-Ung
    • Macromolecular Research
    • /
    • v.9 no.4
    • /
    • pp.238-246
    • /
    • 2001
  • Properties of ternary blends of nylon 6 (Ny6), a thermotropic liquid crystalline polymer (TLCP, poly(ester amide), 20 wt%) and a maleic anhydride grafted polypropylene (2 wt%) (MAPP) were studied under various processing conditions. TLCP was pre-blended with MAPP first and then the binary one blended again with Ny6. The processing temperature of the second mixing was varied. Thermal properties show the partial miscibility of the ternary blend. The morphology of the TLCP phase in the first blending shows mostly in the fibril bundle shape, but varies between droplets and oriented fibrils after the second processing. Some of TLCP phase lost the fibril morphology during the second processing stage. The morphology variation invokes the change in tensile properties. Low extrusion temperature (270$\^{C}$) provides more fibril shapes, which are associated with less deformation in the second stage. The processing temperature effect was more evident when the draw ratio was high. High drawing was applicable due to the stabilizing action of tile compatibilizer.

  • PDF

Evaluation on erosion resistance of STS304 by flyash (Flyash에 의한 STS304 재료의 내침식성 평가)

  • 박해웅;이의열
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.575-584
    • /
    • 2001
  • Erosion due to abrasive particles contained in gas streams from boilers has been emerged as a significant problem in the coal fired power plants. Particle erosion accounted for approximately 50% of boiler failures and especially flyash erosion was responsible for 20~30% of emergency boiler shutdowns. Particularly, because of the high ash loading and high velocity, most erosion occurs in the boiler tubes and economiser tube bank where the direction of the gas stream changes to $180^{\circ}$ .In this study, a high temperature particle erosion tester was used to evaluate erosion rate in a simulated environment. The erosion parameters such as erosion temperature, particle impact angle, particle velocity and various particle size were changed. Flyash is the combustion product of the pulverized coal, where size is ranging from 1 to $200\mu\textrm{m}$. Flyash composed of mainly SiO$_2$, $A1_2$$_O3$, and $Fe_2$$O_3$has dense spherical particles and irregular particles containing numerous pores and cavities. From the erosion tests at various conditions, the maximum erosion was experienced at impact angles of $30^{\circ}$ to $60^{\circ}$ In addition, erosion rate increased in proportional to velocity and temperature. And from the observation of the eroded surfaces, it was also concluded that 304 stainless steel was mainly eroded by extrusion-forging at high impact angle ($90^{\circ}$) and by microcutting mechanism at low impact angles ($30^{\circ}$ and $45^{\circ}$).

  • PDF

Development of Thixoextrusion Process for Light Alloys - Part 1. Microstructural Control of Light Alloys for Thixoextrusion (경량합금 반용융 압출 기술 개발 - Part 1. 반융용 압출을 위한 조직제어)

  • Kim, Shae-K.;Yoon, Young-Ok;Jang, Dong-In;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.211-216
    • /
    • 2006
  • The study for thixoextrusion process of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy was carried out with respect to reheating rate, isothermal holding temperature and time with an emphasis to the effect of homogenization on thixotropic micro-structures during the partial remelting, especially in the low liquid fraction ($f_L<0.2$). The liquid fraction and average grain size with respect to reheating profile such as reheating rate, isothermal holding temperature and time were almost uniform. It is considered very useful for thixoextrusion in terms of process control such as billet temperature control and actual extrusion time. Micro-structural controls of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy before and after homogenization were available and thixotropic microstructures were obtained in both specimens.

Characteristic of alumina-based microfiltration ceramic membrane

  • Hyunsoo, Kim;Oyunbileg, Purev;Eunji, Myung;Kanghee, Cho;Nagchoul, Choi
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • This work addresses the development of microfiltration ceramic membrane from alumina using extrusion method. The membranes were sintered at different temperatures ranging between 1000 and 1300℃. The alumina was characterized with thermogravimetric analysis, particle size distribution, X-ray diffraction, Fourier transform infrared spectrometer and scanning electron microscope analysis. Subsequently, the effect of sintering temperature on the membrane properties such as porosity, flexural strength, and pure water permeability was investigated and optimized for the sintering temperature. It is observed that with increasing sintering temperature, the porosity of the membranes decreases and the flexural strength, and pure water permeability of the membranes increase. The uncoated and coated membranes were compared at constant flux mode of filtration. Under the turbidity solution recirculation alone at 100 NTU, trans-membrane pressure (TMP) of uncoated membrane remained constant when the filtration flux was below 121 Lm-2 h -1 , while the coated membrane was 111 Lm-2 h -1 . Although suction pressure increased more rapidly at higher turbidity, coated membrane filtration showed better removal efficiency of the turbidity.

Study on Thermoplastic Polyester Elastomer Coated Yarn for Replacing PVC Coated Yarn(1) (PVC 대체를 위한 열가소성 폴리에스테르 탄성중합체 코팅사 연구(1))

  • Young Ho Seo;See Woo Park;Myoung Jin Song;Hye Jin Hwang;Tae Hwan Oh
    • Textile Coloration and Finishing
    • /
    • v.35 no.3
    • /
    • pp.137-150
    • /
    • 2023
  • This paper investigated the applicability of polyester yarn coating using ther- moplastic polyester elastomer (TPEE) to replace polyvinyl chloride (PVC) coated yarn for blinds fabric. For this purpose, suitable TPEE for yarn coating was selected by measuring thermal and rheological properties and the yarn coating process conditions were investigated by changing variables such as extrusion temperature, die and nipple dimensions, take-up speed, and core yarn denier. TPEE coated yarns with a diameter of 0.3 and 0.4 mm were prepared, respectively. Tensile properties and cross-section uniformity revealed by a scanning electron microscopy (SEM) of the TPEE coated yarn were analyzed. Among several candidates, TPEE having a melt index of 35 and melting temperature of 153℃ was the most suitable for replacing PVC, and the opti- mum coating conditions for the TPEE coating yarn were a head temperature of 170℃ and core yarn denier of 420 denier. The selected TPEE coated yarns have enough ten- sile strength and uniformity to replace present PVC coated yarns, certified by SEM photograph.

Quality Characteristics of Dough and Bread Added With Extruded Chestnut Shell Powder Under Various Conditions (압출성형 공정변수에 따른 율피분말 첨가 반죽의 물성과 식빵의 품질특성)

  • Lee, Jeong Sug;Yoon, Seong Jun;Ryu, Gi-Hyung
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.351-359
    • /
    • 2017
  • This study investigates the quality characteristics of dough and bread added with 6% chestnut shell powder and extruded chestnut shell powder at various conditions. As extrusion process variables, melt temperature ($110^{\circ}C$, $130^{\circ}C$, $150^{\circ}C$) and moisture (25% and 30%) were controlled. Total dietary fiber content was slightly increased in extruded chestnut shell powder group. In the farinogram, absorption was significantly increased in the group of 25% moisture content and 30% moisture content (p<0.05). After 2 hours and 3 hours, the leavening heights of dough for control showed a similar tendency to that of dough with extruded chestnut shell at a melt temperature $150^{\circ}C$ and with moisture content of 25% and 30%. Specific volume was the highest at a control of $3.74{\pm}0.08cc/g$ and extruded chestnut shell powder group was slightly higher than the chestnut shell powder group. Firmness after 1 day on control of $107.42{\pm}14.52g$ was similar to that of the bread with extruded chestnut shell at a temperature of $150^{\circ}C$ and moisture content of 25% for $113.33{\pm}6.17g$. In conclusion, the extrusion-cooking of chestnut shell powder improved the quality characteristics of dough and bread. The optimum combinations of conditions in tested range were melt temperature at $150^{\circ}C$ and moisture content at 25%, and melt temperature at $130^{\circ}C$ and moisture content at 30%.

Microstructure and High Temperature Mechanical Properties of Oxide Dispersion Strengthened Steels Manufactured by Combination Milling Process (복합 밀링 공정으로 제조된 산화물 분산 강화 강의 미세조직 및 고온 기계적 특성)

  • Lee, Jung-Uk;Kim, Young-Kyun;Kim, Jeoung Han;Kim, Hwi-Jin;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.389-395
    • /
    • 2021
  • Oxide dispersion-strengthened (ODS) steel has excellent high-temperature properties, corrosion resistance, and oxidation resistance, and is expected to be applicable in various fields. Recently, various studies on mechanical alloying (MA) have been conducted for the dispersion of oxide particles in ODS steel with a high number density. In this study, ODS steel is manufactured by introducing a complex milling process in which planetary ball milling, cryogenic ball milling, and drum ball milling are sequentially performed, and the microstructure and high-temperature mechanical properties of the ODS steel are investigated. The microstructure observation revealed that the structure is stretched in the extrusion direction, even after the heat treatment. In addition, transmission electron microscopy (TEM) analysis confirmed the presence of oxide particles in the range of 5 to 10 nm. As a result of the room-temperature and high-temperature compression tests, the yield strengths were measured as 1430, 1388, 418, and 163 MPa at 25, 500, 700, and 900℃, respectively. Based on these results, the correlation between the microstructure and mechanical properties of ODS steel manufactured using the composite milling process is also discussed.

The Study on the Properties of Polypropylene/Nylon6 with Various Compatibilizers (Polypropylene/Nylon6 블렌드에서 이종의 상용화제에 따른 물성연구)

  • Kim, H.C.;Lee, K.Y.;Kim, H.I.
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.497-501
    • /
    • 1999
  • The changes of properties were studied for the polypropylene(PP)/Nylon6 blends containing different kinds of compatibilizer made by either reactive extrusion of solution reaction. The compatibilizers were PP grafted with maleic anhydride (MAH) made by reactive extrusion and solution reaction. The grafted MAH contents were 0.3 wt %, and 2.7 wt %, respectively. The composition of the PP/nylon6 blend was fixed at 75/25 by weight. Blending was carried out with twin-screw extruder (L/D=30, ${\psi}=30$) at 300 rpm. As the content of PP-g-MAH was increased, the crystallization peak of Nylon6 decreased gradually then finally disappeared. Disappearance of crystallization peak of Nylon6 was mostly affected by grafted MAH content rather than the preparation method and the amount of compatibilizer. The portion of Nylon6 that could not crystallize in its normal crystallization temperature crystallized together with PP at the crystallization temperature of PP. So called concurrent crystallization was observed. Meanwhile two more peaks were observed during heating cycle. One was exothermic peak at $193^{\circ}C$ near to crystallization temperature of Nylon6, the other was endothermic peak at $215^{\circ}C$ that was $5^{\circ}C$ lower than normal endothermic peak of Nylon6. To analyze the peaks, nylon6 was annealed in the differential scanning calorimeter. As a result, the peak at $193^{\circ}C$ was crystallization peak of imperfect crystalline of Nylon6 and the other peak at $215^{\circ}C$ was melting peak of imperfect crystalline of nylon6.

  • PDF