• 제목/요약/키워드: Extrusion Temperature

Search Result 474, Processing Time 0.026 seconds

Preparation Condition and Product Quality of Precooked Redbean Porridge (즉석팥죽 제조를 위한 가공조건 및 제품의 품질)

  • Kim, Chong-Tai;Kim, Bok-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.305-309
    • /
    • 1994
  • Precooked powder of redbean porridge (RP) was prepared by the series of process extrusion, drying, milling and blending with a mixture of whole redbean flour and corn starch and others. The optimum process and quality of products for RP were investigated. After extrusion under the moisture content 24 to 26%, twin screw speed 350 rpm, extrusion temperature 150 to $155^{\circ}C$ and feed rate 60 kg/hr, the product had a higher quality with its natural redbean flavor/color. During the extrusion process, extrusion temperature and specific mechanical energy increased from 150 to $198^{\circ}C$ and from 134 to 144 kwh/ton respectively, as the amount of addition water decreased from 6 to 2 kg/hr. By the hot air drying of redbean extrudate (RE). it could be dried below to 4% moisture content, of which level considered as an optimal moisture content for anti-caking of the powdered product, at $80^{\circ}C$ for 4hrs and at $100^{\circ}C$ for 1.5 hrs respectively. In the sieve analysis of extrudate powder, when the product milled through a mesh size of 0.5 mm or 1.0 mm, about 80% or 65% of the feed was passed a 65 mesh screen respectively. Moisture absorption of final blended products was formed a cake under 100% of relative humidity after 13 hrs of storage. As the amount of RE powder reduced, the flavor score of products decreased by sensory evaluation of products prepared by the different ratio of RE powder, corn starch and sugar.

  • PDF

Fermentation Characteristics for Extruded Hair of Tissue Cultured Mountain Ginseng

  • Ji, Yan-Qing;Yang, Hye-Jin;Tie, Jin;Kim, Mi-Hwan;Yang, Jae-Ghan;Chung, Ki-Wha;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.2
    • /
    • pp.156-161
    • /
    • 2009
  • Effects of extrusion conditions (barrel temperature and moisture content) and fermentation time on the antioxidant properties of root hair of tissue cultured raw mountain ginseng (MG) were investigated. The barrel temperature/ moisture combinations were: $110^{\circ}C$/25% (MG1), $140^{\circ}C$/25% (MG2), $110^{\circ}C$/35% (MG3) and $140^{\circ}C$/35% (MG4). Red ginseng (RG) was also investigated. The contents of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and polyphenolic increased after fermentation in RG and even more in MG, while extruded ginseng samples exhibited little change. The increases noted with MG and RG occurred during the first 4 days of fermentation. DPPH radical scavenging activity decreased after extrusion and was significantly higher in MG (20.93%) than RG (1.63%) on the first day of fermentation. DPPH radical scavenging activity in the barrel temperature/moisture combinations were 19.01% (MG1), 14.45% (MG2), 20.37% (MG3) and 15.78% (MG4). The content of polyphenolic compounds in ginseng samples displayed a similar trend. Acidic polysaccharide in RG and MG1${\sim}$MG4 were higher than MG, but decreased during fermentation. Crude saponin in RG and MG1${\sim}$MG4 decreased after 15 days of fermentation, while increasing in MG.

Analysis of the Thermal/Mechanical Energy in Food Extrusion Process (식품 압출성형공정의 열 및 기계에너지 분석)

  • Chung, Moon-Young;Lee, Seung-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.65-71
    • /
    • 1997
  • The energy supplied by motor of extruder, being known mostly to be dissipated as heat, was classified into two kinds of energy: a thermal energy by heat dissipation and a purely mechanical energy. The thermal energy was defined as a energy in terms of temperature rise and the mechanical energy as the motor energy minus the heat dissipated energy. A method to derive the thermal energy and the relative mechanical energy (the mechanical energy calculated regarding the mechanical energy at the lowest screw speed as zero) under the condition of constant barrel temperature was developed by which an extrusion case was analyzed. When extruding com grits with moisture $(27{\sim}37%)$ at low barrel temperature $({\leq}80^{\circ}C)$, the thermal energy slightly increased with increase in the moisture content, whereas the relative mechanical energy increased to a great extent. When increasing the screw speed, the thermal energy was nearly kept constant, whereas the relative mechanical energy largely varied. It is concluded that as the moisture content increases, the role of the mechanical energy becomes more effective than the heat energy dissipated from the motor energy.

  • PDF

Effects of the Degree of GO Reduction on PC-GO Chemical Reactions and Physical Properties (그래핀 옥사이드(GO)의 환원정도가 PC-GO 화학반응 및 물성에 미치는 영향)

  • Park, Ju Young;Shin, Jin Hwan;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.53-58
    • /
    • 2015
  • Polycarbonate (PC)/graphene oxide (GO) composites with 3 phr of GO were prepared by using a twin screw extruder at 240, 260, and $280^{\circ}C$ after mixing the solution with chloroform. It was confirmed by DSC and TGA that the glass transition temperature ($T_g$) of PC/GO composites were not changed and the thermal stability was the best in case of the extrusion temperature at $260^{\circ}C$. Thermo mechanical properties of PC/GO composites according to extrusion temperatures were measured by dynamic mechanical analysis (DMA). Storage moduli of PC/GO composites were higher than that of pure PC and there was no detectable changes at varying the extrusion temperature. Based on these results, the extrusion temperature of PC/GO composites was fixed at $260^{\circ}C$. The degree of the chemical reaction of PC/GO composites with respect to the GO reduction time was confirmed by the C-H stretching peak at $3000cm^{-1}$ and the degree of the chemical reaction was similar to that of GO when the reduction time was 1 h. A decrease in the complex viscosity as a function of the GO reduction time was detected by dynamic rheometer, which may be originated from the enhancement of GO dispersion by PC-GO reaction. The GO dispersion was confirmed by scanning electron microscope (SEM).

Effects of mushroom composition on the quality characteristics of extruded meat analog (버섯 첨가가 압출성형 대체육의 품질 특성에 미치는 영향)

  • Cho, Sun Young;Ryu, Gi-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.357-362
    • /
    • 2020
  • This study was conducted to investigate the effects of mushroom composition (0, 4, 8, and 12%) on the quality characteristics of an extruded meat analog. The meat analog blend was isolated soy protein, wheat gluten, and corn starch (50:40:10). The extrusion condition was set to 55% feed moisture, 170℃ barrel temperature, and 150 screw speed by high moisture extrusion using a twin-screw extruder equipped with a cooling die. The integrity index, hardness, cohesiveness, springiness, chewiness, and cutting strength of the meat analog increased with the increasing mushroom content, while its water holding capacity and nitrogen solubility index (NSI) decreased. The protein digestibility decreased with the increasing mushroom content, while the DPPH radical scavenging activity significantly increased. In conclusion, the incorporation of mushrooms into the investigated meat analog enhanced its texture and antioxidant level.

An Experimental Study for Mechanical Properties of Al-Mg-Mn-Si Alloy by ECA pressing (ECA기법을 활용한 Al-Mg-Mn-Si 합금의 기계적 성질에 관한 연구)

  • Kook, Jong-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.785-792
    • /
    • 2011
  • Equal channel angular(ECA) pressing is the established processing technique in which a polycrystalline metal is pressed through the die to achieve a very high plastic strain. Therefore, the capability to produce an ultra-fine grain size in the materials is provided. To investigate that mechanical properties at elevated temperature have the ultrafine grain ECA pressing, experiments were conducted on an Al-4.8% Mg-0.07% Mn-O.06% Si alloy. After having been solution treated at 773K for 2hrs, the billet for ECA pressing was inserted into the die. And it was pressed through two channel of equal to cross section intersecting at a 90 degree angle. The billet can be extrude repeatedly because of 1:1 extrusion ratio. Since the billet is passed through the cannel for 2 times, a large strain is accumulated in the alloy. The tensile tests on elevated temperature were carried out with initial strain rate of $10^{-3}s^{-1}$ at eight temperature distributed from 293K to 673K.

Optimum Curing and Full-out Velocity in the Rubber Extrusion Process for Electric Cable Manufacture (전선피복용 고무압출가공 공정의 최적 경화 및 선출 속도)

  • Kim, Duk-Joon;Choi, Sang-Soon;Kim, Tae-Ho
    • Elastomers and Composites
    • /
    • v.33 no.2
    • /
    • pp.93-102
    • /
    • 1998
  • In electric cable industries, the curing extent of the rubber materials covering the electric cores gives an significant effect on their final performance. The curing extent of rubber is controlled mostly by pull-out velocity of cable in the extrusion process. The final curing extent may be different for different radial positions inside the rubber because of the non-uniform temperature distributions during the curing process. In this contribution, the prediction of curing extent distribution throughout the radial direction of rubber is represented when the cable is passing through the steam curing zone with a fixed pull-out velocity. The prediction of the optimum pull-out velocity for the desired curing extent distribution is also reported. The steady-state heat balance was developed for the curing and cooling processes in which the pull-out rubber was cured by high temperature steam and then cooled by ambient water. A few essential material properties such as density, specific heat, and thermal conductivity were measured to analyze the temperature distribution during the curing and cooling processes. The times to reach 90% curing extent at varying temperatures were measured and used to determine the final cure extent distribution inside the rubber.

  • PDF

Effect of Ca addition on the microstructure and mechanical properties of extruded AZ31 alloy (마그네슘합금 AZ31 압출재의 기계적특성에 미치는 Ca의 효과)

  • Kim, Jeoung-Han;Kang, Na-Eun;Lee, Sang-Bok;Yim, Chang-Dong;You, Bong-Sun;Kim, Byoung-Kee
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.281-284
    • /
    • 2007
  • The effect of Ca addition on the microstructure evolution and deformation behavior of AZ31 magnesium alloy produced by hot extrusion was investigated. For this purpose, Ca was added into AZ31 melts to the level of 0.7 and 2.0 wt.% Ca. Then, AZ31 base alloy and Ca modified AZ31 alloys were extruded at $383^{\circ}C$. Ca added alloys showed finer grain size and increased hardness value rather than AZ31 base alloy. After isothermal hot compression, the shape of tested specimen exhibited a noticeable anisotropy due to the crystallographic texture effect. The ratio of major and minor axes of ovality was not directly related to test condition and Ca amount. Flow stress level increases with the increase of Ca addition at temperature below $300^{\circ}C$ because of fine microstructure. However, at high temperature and low strain rate region ($400^{\circ}C$ and $10^{-3}s^{-1}$), reverse tendency was observed since main deformation mechanism changes from dislocation slip to grain boundary sliding or diffusional process at high temperature.

  • PDF

High Temperature Mechanical Properties of Continuous Cast and Extruded ZK60A Alloy (연속주조 압출 ZK60A 합금의 고온 기계적 특성)

  • Ahn, B.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.178-183
    • /
    • 2014
  • Continuous casting is a process where molten metal is solidified into a semi-finished billet on a large scale with either a rectangular or round cross section for subsequent processing. The use of continuous casting provides an opportunity for producing material on a practical industrial scale with lower cost than conventional casting. In the current study, the material was fabricated by continuous casting and subsequent extrusion. Tensile tests were conducted on continuous cast ZK60A after extrusion over a range of strain rates at temperatures from 473K to 623K. The alloy exhibits a quasi-superplastic behavior with a maximum recorded elongation of ~250% at 523K when tested with an initial strain rate of $10^{-5}/s$. The experiments give a strain rate sensitivity exponent of 0.3~0.4 and an activation energy of 108 kJ/mol. From the current investigation, it was found that the high-temperature plastic flow of the ZK60A is controlled by a dislocation viscous glide mechanism.

Study for Heat Treatment Optimization of Titanium Hollow Casted Billet (타이타늄 중공마더빌렛 주조재의 열처리공정 최적화 연구)

  • Youn, Chang-Suk;Park, Yang-Kyun;Lee, Hyung-Wook;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.68-73
    • /
    • 2019
  • ${\alpha}$-titanium alloy has a relatively low heat treatment characteristic and it is mainly subjected to heat treatment for residual stress, recovery or dynamic recrystallization. In this study, commercially pure titanium hollow castings was fabricated by gravity casting. Heat treatments were carried out at $750^{\circ}C$, $850^{\circ}C$ and $950^{\circ}C$ to investigate the effect of post-heat treatment on microstructure and mechanical properties. Beta-transus temperature ($T_{\beta}$) was about $913^{\circ}C$, and equiaxed microstructure was shown at temperature below $T_{\beta}$ and lath-type microstructure at temperature above $T_{\beta}$. Microstructure and mechanical properties did not show any significant difference in the direction of solidification for titanium hollow billet, so it can be seen that it was a well-made material for extrusion process. The optimum heat treatment condition of hollow billet castings for the seamless tube production was $850^{\circ}C$, 4 hr, FC, indicating a combination of equiaxed microstructure and appropriate mechanical properties.