• Title/Summary/Keyword: Extrusion Die

Search Result 429, Processing Time 0.03 seconds

Analytical Considerations on Some Design Parameters of Flat-Die Extrusion Processes (평금형 압출공정 설계 인자에 대한 해석적 고찰)

  • Lee C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.98-101
    • /
    • 2001
  • In the present study, several design parameters of the flat-die extrusion process are investigated using the rigid-plastic finite element method. The effect of loaction of extrusion profile, arrangement of multiple extrusion profiles, and design of various die land has been investigated through the analysis. Several numerical examples of flat-die extrusion, such as C-section, multiple U- shape, and window guide extrusion, are analyzed. From the comparative study, the effect of design parameters is investigated. In each example, comparing the velocity distribution with that of the original design, it has been shown that the design modification affords much more uniform distribution of axial velocity

  • PDF

A Study of the Twisting and Extrusion Process of the Product with Involute Helical Fin from the Round Billet by the Upper Bound Analysis (상계해법에 의한 원형빌렛으로부터 인볼루트 헬리컬핀을 가진 제품의 비틀림 압출가공법에 관한 연구)

  • 박대윤;진인태
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.302-310
    • /
    • 2001
  • The twisting and extrusion process of the product with involute helical fin from the round billet is developed by the upper bound analysis. The twisting of extruded product is caused by the twisted inclined die surface connecting the die enterance section and the die exit section linearly. In the analysis, the internal shear surface is defined as the curved twisted plane from the twisting of die surface and the shear work is calculated by the consumption of shear energy. The increase rate of angular velocity is determined by the minimization of plastic work. The angular velocity of die exit can be controlled by the land length and the length of inclined die. The alular velocity assums to be increased linearly by the axial distance from the die enterance to the die exit. The results of the analysis show that the angular velocity of the extruded product increases with the die twisting angle, the reduction of area, and decreases with the die length, the friction constant.

  • PDF

Relation of Deformation between Die and Product in Backward extrusion (후방압출 공정에서 금형과 제품의 변형관계)

  • 박태식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.83-87
    • /
    • 2000
  • The die for cold forging gets a ver high axial load and radial pressure during processing and hence deforms considerably in the radial direction. This radial deformation of die becomes a important factor influencing the dimensional accuracy of a product. In order to obtain a product with highly accurate dimension therefore it is essential to acquire some information on elastic deformation of the die and the product. The study has been performed for the relation of the deformation between a die and a product in backward extrusion. The strain of the die has been given by the simple experiment using the strain gauges attached to the outer surface of the die. Also the history of the deformation of the die and the product has been given by the experiment and Lames' formula. The results has been compared with the previous another method. The study has given useful results for the deformation history of the die and the product through the experiment and Lame's formula in backward extrusion which can be applied in the die design for the product with accurate dimension

  • PDF

Deformation History of Product during Forward Extrusion Process (전방압출 공정에서 제품 변형 이력)

  • 박용복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.76-79
    • /
    • 1999
  • The study has been performed for the relation between die and product in forward extrusion by the experiment. Strains of the die have been given by the simple experiment using the strain gauge located at the outer surface of the die and the history of the deformation of the die and product is given by the experiment and Lame's formula. The inner pressure of the die causes the deformation of die that affects the accuracy of dimension and shape of product. The product with accurate dimension and shape can be obtained by analysing elastic deformation of the die during process. The deformation of the die during metal forming process has been usually predicted by the experience of industrial engineer or finite element analysis. But it is difficult to predict the dimension of product at unloading and ejected states. The study has given useful results for the deformation history of the die and product through the experiment and Lame's formula at forward extrusion for solid cylinder and can be applied to the die design for product with accurate dimension.

  • PDF

Deformation History of Product during Forward Extrusion Process (전방압출 공정에서 제품 변형 이력)

  • 이강희;박용복
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.75-79
    • /
    • 2001
  • The study has been performed for the relation between die and product during forward extrusion by the experiment. Stains of the die have been given by the simple experiment using the strain gauge located at the outer surface of the die. The history of the deformation of the die and the product has been given by the experiment and Lame's formula. The inner pressure of the die causes the deformation of die that affects the accuracy of dimension as well as shape of the product. The product with accurate dimension and shape can be obtained by analysing elastic deformation of the die during the process. The deformation of the die during metal forming process has been usually predicted by the experience of industrial engineer or finite element analysis. But it is difficult to predict the dimension of the product at unloading and ejected states. In the present study, useful results for the deformation history of the die and the product were obtained through the experiment and Lame's formula in forward extrusion which can be applied to the die design for the product with accurate dimension.

  • PDF

Prediction of Welding Pressure in the Non Steady State Porthole Die Extrusion of Al7003 Tubes

  • Jo, Hyung-Ho;Lee, Jung-Min;Lee, Seon-Bong;Kim, Byung-Min
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.36-41
    • /
    • 2003
  • This paper describes a numerical analysis of a non-steady state porthole die extrusion, which is useful for manufacturing long tubes with a hollow section. Materials divided through several portholes are gathered within a chamber and are then welded under high pressure. This weldability classifies the quality of tube products and is affected by process variables and die shapes. However, porthole die extrusion has been executed based on the experience of experts, due to the complicated die assembly and the complexity of metal flow. In order to better assist the design of die and to obtain improvement of productivity, non-steady state 3D FE simulation of porthole die extrusion is required. Therefore, the objective of this study is to analyze the behavior of metal flow and to determine the welding pressure of hot extrusion products under various billet temperatures, bearing length, and tube thickness by FE analysis. The results of FE analysis are compared with those of experiments.

Development of Porthole Extrusion Die for Improving Welding Pressure in Welding Chamber by Using Numerical Analysis (수치해석을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출금형 개발)

  • Lee, S.Y.;Lee, I.K.;Jeong, M.S.;Ko, D.C.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.26 no.2
    • /
    • pp.115-120
    • /
    • 2017
  • Porthole extrusion process is a very effective metal forming process to produce aluminum profiles with hollow sections. The structure of porthole extrusion die is very complex. In this process, the billet is divided by porthole bridge, and then the divided billet is welded in the welding chamber. The welding pressure in the welding chamber is very important. The higher welding pressure improves the quality of the aluminum profiles. Therefore, the objective of this study is to develop a new porthole extrusion die for improving the welding pressure in the welding chamber by using numerical analysis. The effectiveness of the new porthole extrusion die was verified by using numerical analysis. Through numerical analysis, the welding pressures in the welding chamber between the new porthole die and the conventional porthole die were compared with each other.

Flow Analysis of Profile Extrusion by a Modified Cross-sectional Numerical Method

  • Seo, Dongjin;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.103-110
    • /
    • 2000
  • Flow analysis of profile extrusion is essential for design and production of a profile extrusion die. Velocity, pressure, and temperature distribution in an extrusion die are predicted and compared with the experimental results. A two dimensional numerical method is proposed for three dimensional analysis of the flow field within the profile extrusion die by applying a modified cross-sectional numerical method. Since the cross-sectional shape of the die is varied gradually, it is assumed that the pressure is constant within a cross-sectional plane that is perpendicular to the flow direction. With this assumption, the velocity component in the cross-sectional direction is neglected. The exact cross-sectional shape at any position is calculated based on the geometry of standard cross-sections. The momentum and energy equations are solved with proper boundary conditions at a cross-section and then the same calculation is carried out for the next cross-section using the current calculated values. An L-shaped profile extrusion die is produced and employed for experimental investigation using a commercially available polypropylene. Numerical prediction for the varying cross-sectional shape provides better results than the previous studies and is in good agreement with the experimental results.

  • PDF

Manufacturing Powder Extrusion Die and Experiment for Fabrication of Miniature Helical-Gears (소형 헬리컬 기어 제조를 위한 분말 압출 금형 제작 및 실험)

  • Hwang, D.W.;Lee, K.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.283-289
    • /
    • 2010
  • Extrusion process in the bulk material for fabrication of miniature helical gears has problems such as a high forming load and short tool life because the cross-section is complex and asymmetry. To overcome these problems, in this study, miniature helical gears were fabricated by Zn-22Al powder hot extrusion. The included die angle for minimum extrusion load and improving die filling was determined by FE-simulation. The Zn-22Al spheroidal powder produced by gasatomization were compacted and sintered for extrusion experiment. The dimension of helical-gear is 0.3mm in module, 3.35mm in pitch diameter, $15^{\circ}$ in helix angle and the number of teeth is 12. All of the extrusion experiments were performed with internal helical gear die which was machined by precision electric discharge machining using the electrode. The experiment was conducted at $190^{\circ}C$ to $310^{\circ}C$ to obtain extrusive and mechanical properties. The extruded helical gears were analyzed through extrusion load, Vickers hardness and SEM images for each extrusion temperature. The powder hot extrusion process was successfully applied to fabricate a miniature helical gear.

The Effect of Extrusion Temperature and Die Angle on Mechanical Properties of $SiC_p$/2024Al Composites Fabricated by Powder Extrusion Method (분말압출법으로 제조된 $SiC_p$/2024Al 복합재료에 있어서 압출온도와 다이각이 기계적 성질에 미치는 영향)

  • 성병진
    • Journal of Powder Materials
    • /
    • v.2 no.1
    • /
    • pp.44-52
    • /
    • 1995
  • Effects of the extrusion temperature and die angle on the tensile properties of SiCIyAl composites in powder extrusion have been investigated. SiCP/Al composites were extruded at various extrusion temperatures (450, 500, $550^{\circ}C$) under the extrusion ratio of 25 : 1. The ram speed was maintained at 13 cm/min for all the extrusion conditions. The surface of the extruded rod appeared to be smooth without tearing at 450 and 50$0^{\circ}C$, whereas it was very rough due to tearing at $550^{\circ}C$. It was found that the tensile strength and elongation of the composites extruded at $500^{\circ}C$ are greater than those of composites extruded at $450^{\circ}C$ This is due to the easier plastic deformation of composite extruded at $500^{\circ}C$, compared with the composites extruded at $450^{\circ}C$. The effect of die angle was examined under 20=60, 120, $180^{\circ}$die angles at extrusion temperature of $500^{\circ}C$ under 25:1 extrusion ratio. The tensile strength of the composites extruded with 20=$60^{\circ}$approved to be higher than that of the composties extruded with 28 : 120 and $180^{\circ}$This is attributable to the higher extrusion pressure, which mixed composite powders could be densely consolidated at elevated temperatures, resulting from high friction force between billet and sliding surface of conical die.

  • PDF