• Title/Summary/Keyword: Extrusion

Search Result 1,942, Processing Time 0.027 seconds

New Process Design of Open Backward Extrusion to reduce the Forming Load (성형 하중 저감을 위한 개방형 후방 압출의 신공정 설계)

  • 정덕진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.125-130
    • /
    • 1999
  • In order to reduce the forming load of backward extrusion to a feasible level a new backward extrusion processes are proposed. In these process the shape of punch and die for conventional backward extrusion are change to open backward extrusion. To analyse the process numerical simulations by the finite element method has been performed, This simulation gave good results concerning the prediction of the forming load material flow and the corresponding shape of forged products, . These predictions set the limits of the preform shape and forming load depending on the punch and die geometry. The results show that the forming load is reduced significantly when the conventional backward extrusion change to open backward extrusion.

  • PDF

Die stress and Process of Analysis for Condenser Tube Extrusion according to Chamber Height (접합실 높이변화에 따른 컨덴서 튜브 직접압출 공정 및 금형강도해석)

  • Lee J. M.;Lee S. G.;Kim B. M.;Jo H. H.;Jo H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.33-41
    • /
    • 2002
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to variation of chamber length. in porthole die. Estimation was carried out using finite element method. Porthole die is analyzed in as non-steady state. Analytical results provide useful information the optimal design of porthole die.

  • PDF

Introducing hydrostatic extrusion process for long-length processing of Bi-2223 superconducting tape

  • 정재훈;유재무;고재웅;강신철;김해두
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.193-197
    • /
    • 2002
  • There are many problems in wire fabrication of long length Bi-2223 superconductor by using conventional extrusion method. They are mainly due to high surface resistance and inhomogeneous distribution of inner stress. Hydrostatic extrusion process will not only decrease the extrusion pressure but also enhance homogeneous deformation of material by reducing friction force between billet and container Hydrostatic extrusion method is considered to be useful fur fabrication of the homogeneous wire with high density. In this paper, hydrostatic extrusion process is introduced to fabricate Bi-2223 superconducting tape, and also discussed are the interface homogeneity and microstructural aspects of extruded BSCCO/Ag billet.

  • PDF

The Characteristic of a Hydrostatic Extrusion of Magnesium Alloy(AZ31) (Mg 합금(AZ31)의 열간 정수압 압출 특성에 관한 연구(I))

  • Yoon D. J.;Seo Y. W.;Jeong H. G.;Na K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.128-131
    • /
    • 2004
  • Magnesium alloys are being extensively used in weight-saving applications and as a potential replacement for plastics in electronic and computer applications. Magnesium alloy has some good characteristics, EMI shielding property and high specific strength. Nevertheless their high brittleness make it uneasy to process the magnesium. Magnesium alloys are extruded like aluminium alloys. The present work was done to find a characteristic of magnesium alloy(AZ31) changing the extrusion ratio 8.5, 19.1, 49 respectly and changing the die half angle $30^{\circ},\;45^{\circ},\;60^{\circ}$. Here this present done by the hydrostatic extrusion in the hot condition, $310^{\circ}$. The higher the extrusion ratio goes, the higher the extrusion force goes.

  • PDF

Numerical and Experimental Investigation on the Tube Forming in the Radial-Forward Extrusion

  • Ko Beong-Du;Jang Dong-Hwan;Choi Ho-Joon;Hwang Beong-Bok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.26-33
    • /
    • 2005
  • In this paper, the tube forming by radial-forward extrusion is analyzed by numerical simulation and experiments. The paper discusses the effect of process variables such as gap height, relative gap width and die comer radius on tube forming. The influence of deformation patterns of flange in radial extrusion on forward extrusion for tube forming is investigated and summarized in terms of the maximum forming force and hardness variations along the extrusion path. Furthermore the external defects are shown experimentally during the forming operation. Based on finite element analysis in conjunction with experimental test in Al alloy, analysis is performed for important parameter combination in order to reduce forming defects. Eventually, the process parameters for safe forming are suggested in order to reduce the forming defects.

Numerical and Experimental Investigation on the Tube Forming in the Radial-Forward Extrusion (레이디얼-전방압출에서 튜브성형에 관한 해석 및 실험)

  • 고병두;장동환;최호준;황병복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.168-175
    • /
    • 2003
  • In this paper, the tube forming by radial-forward extrusion is analyzed by numerical simulation and experiments. The paper discusses the effects of process variables such as gap height, relative gap width and die corner radius on tube forming. The influence of deformation patterns of flange in radial extrusion on forward extrusion for tube forming is investigated and summarized in terms of the maximum forming force and hardness variations along the extrusion path. Furthermore the external defects are shown experimentally during the forming operation. Based on finite element analysis in conjunction with experimental test in Al alloy, analysis is performed for important parameter combination in order to reduce forming defects. Eventually, the process parameters for safe forming are suggested in order to reduce the forming defects.

Optimization Techniques of Die Disign on Hot Extrusion Process of Metal Matrix Composites (금속복합재료의 열간압출에 관한 금형설계의 최적화기법(I))

  • 강충길;김남환;김병민
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.346-356
    • /
    • 1997
  • The fiber orientation distribution and interface bonding in hot extrusion process have an effect on the maechanical properties of metal matrix composites(MMC's). Aluminium alloy matrix composites reinforced with alumina short fibers are fabricated by compocasting method. MMC's billets are extruded at high temperature through conical and curved shaped dies with various extrusion ratios and temperature. This present study was directed to describe the systematic correlation between extrusion die shape and subsequent results such as fiber breakage, fiber orientation and tensile strength to hot extruded MMC's billet. Extrusion load, tensile strength and hardness for variation of extrusion ratios and temperature are investigated to examine mechanical properties of extruded MMC's SEM fractographs of tensile specimens are observed to analyze the fracture mechanism.

  • PDF

Influence of Process Parameters on the Forming Compatibility in Composite Extrusion Rods (복합압출재료봉의 공정변수가 성형 적합성에 미치는 영향)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. From the simulation results, the sleeve cladding rate at the core/sleeve interface was recorded as a distribution of diameter ratio and interference conditions, which will be useful for the investigations of the bonding process during co-extrusion process. In addition, the results of the co-extrusion, connected with the results of the variations of diameter rate and average contact pressure, demonstrate a good agreement and present the possibility of describing the parameters of the plastic zones in non-uniform deformation of these type of composite materials.

Fogrming Experiment using Improved CNC Extruder and FE Analysis in Varied Section Extrusion Process (가변단면 압출기 제조와 그에 따른 성형실험 및 유한요소 해석)

  • Choi, H.J.;Lim, S.J.;Shin, H.T.;Choi, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.128-131
    • /
    • 2007
  • It is very important that there are saving resource and energy in the future as well as in these day. Weight saving of structural parts, which are formed by extrusion, plays a key role in manufacturing field. Especially these aluminum parts used in the car need other processes to vary the cross section in the axial direction. Thus, applications of these parts are limited by high cost. if the cross section of the parts is variable by only extrusion, application of extruded aluminum parts will more increase. Therefore, a new CNC extruder which can control the section area of a car part was invented the nation's first. Using the extrusion machine, the experiment and FE analysis were performed during the varied section extrusion process.

  • PDF

Extrusion Behavior and Finite Element Analysis of Rapidly Solidified Al-Si-Fe Alloys (급속응고 Al-Si-Fe 합금의 압출거동 및 유한요소 해석)

  • 정기승
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.56-61
    • /
    • 1999
  • The plastic deformation behaviors for powder extrusion of rapidly soildified Al-Si-Fe alloys at high temperature were investigated. During extrusion of Al-Si-Fe alloys, primary Si and intermetallic compound in matrix are broken finely. Additionally, during extrusion metastable $\delta$ phase($Al_4SiFe_2$) intermetallic compound disappears and the equilibrium $\beta$ phase($Al_5FeSi_2$) is formed. In gereral, it was diffcult to establish optimum process variables for extrusion condition through experimentation, because this was costly and time-consuming. In this paper, in order to overcome these problems, we compared the experimental results to the finite element analysis for extrusion behaviors of rapidly solidified Al-Si-Fe alloys. This ingormation is expected to assist in improving rapidly solidified Al-Si alloys extrusion operations.

  • PDF