• Title/Summary/Keyword: Extruded aluminum tube

Search Result 25, Processing Time 0.021 seconds

Performance Design of Aluminum EGR Cooler Consisting of Extruded Tubes for LPL EGR System (LPL EGR 시스템용 압출 튜브 구조의 알루미늄 EGR 쿨러 성능 설계)

  • Heo, Hyungseok;Bae, Sukjung;Kang, Taegu;Lee, Junyong;Seo, Hyeongjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-50
    • /
    • 2017
  • A study has been conducted to develop an aluminum EGR cooler for the LPL EGR system of a diesel engine. Aluminum has a much lower density and thermal conductivity that is about 12 times or more than that of stainless steel, so it is advantageous for use in an EGR cooler for weight reduction and cooling performance effects. A design process has been carried out to ensure heat dissipation performance in a restricted space to investigate the geometric parameters and satisfy the requirements for pressure drops at both fluid sides. The tubes of exhaust gas have been designed as extruded tubes. An aluminum EGR cooler consisting of extruded tubes entails a simpler manufacturing process compared to a stainless steel EGR cooler with conventional heat transfer fins. A prototype has been manufactured from the final model selected through the design process. The performance of the aluminum EGR cooler was evaluated and compared with that of the conventional one. The weight of the aluminum EGR cooler is reduced by 22.9%, while performance is significantly improved.

Development of Manufacture Technology on Aluminum Rear Subframe by Hot Air Forming Method (열간가스성형 공법을 이용한 알루미늄 리어 서브프레임 제조기술 개발)

  • Kim, B.N.;Son, J.Y.;Lee, G.D.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.222-225
    • /
    • 2008
  • Due to new requirements of the automotive industry, concerning lightweight and non-corroding construction, new production methods, The Hot Air Forming process of aluminum alloys are of special interest. The disadvantage of aluminum alloy is the poorer formability compared to steel. The Hot Air Forming process is one of the forming process receiving recent attention. In the current study, Fabrication of aluminum rear subframe has been attempted using seam and seamless aluminum tubes. On the base of hot workability of the extruded tube and PAM-STAMP simulation results, Optimum condition for fabricating aluminum rear sub(lame parts by Hot Air Forming could be determined.

  • PDF

Development of Hydroformed Automotive Parts with Heat-treatable Aluminum Extrudates (열처리형 Al 압출재를 이용한 하이드로포밍 부품개발)

  • Lee, M.Y.;Kang, C.Y.;Ryu, S.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.3
    • /
    • pp.165-172
    • /
    • 2004
  • Compared with the hydroforming technology for steel, the hydroforming technology for aluminum has not been actively investigated. Recently, the hydroforming of high strength aluminum tubes has attracted great interest because of its good strength to weight ratio. In this study, front side member (FSM) is fabricated with the hydroforming of aluminum tube and the mechanical properties and dimensional accuracy of the hydroformed FSM is investigated. For hydroforming process, extruded aluminum tubes with ribs to improve the structural rigidity are used. To ensure the mechanical properties, the aluminum tubes are T6 heat-treated before hydroforming.

Forming Limit Diagram of an Aluminum Tube from Hydroforming tests (액압성형 시험을 통한 알루미늄 튜브 재료의 성형한계도)

  • Kim J. S.;Lee J. K.;Park J. Y.;Lee D. J.;Kim H. Y.;Kim H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.253-257
    • /
    • 2005
  • A tube hydroformability testing system was designed and fabricated so as to observe the forming process and to apply forming condition along arbitrarily pre-programmed internal pressure-axial feed path. The forming limit diagram of A6063 extruded tube, of 40.6 mm outer diameter and 2.25 mm thickness, was successfully obtained through free bulging and T-forming tests except the region of high positive minor strain. It is found that the data points marked on the FLD are mostly located near the strain paths from the finite element analysis excluding the cases of large axial feed. There exist data points even in the area beyond the uniaxial tension mode, since the reduction in thickness decreases due to the axial feed. The forming limit from T-forming test was considerably lower than that from free bulge test. It seems because the deformation is localized at the pole.

  • PDF

Die Stress and Process Analysis for Condenser Tube Extrusion according to Chamber Height (접합실 높이에 따른 컨덴서 튜브 직접압출 공정 및 금형강도 해석)

  • Lee, J.M.;Kim, B.M.;Jung, Y.D.;Jo, H.;Jo, H.H.
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.214-220
    • /
    • 2003
  • In the case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. There have been few studies about condenser tube extruded by porthole die. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to variation of chamber length in porthole die. The welding chamber height in condenser tube was calculated by using finite element method. Forming analysis results for condenser tube would provide useful information for the optimal design of porthole die.

Development of design technique for automotive condenser (자동차용 에어컨 응축기의 설계기술 개발)

  • Cho, Y.D.;Han, C.S.;Yoo, S.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.10-17
    • /
    • 1999
  • The present work presents condensation heat transfer and pressure drop data for the flow of R-12 in flat extruded aluminum tubes with small hydraulic diameters. The tube outside dimensions are $18mm(width){\times}1.7mm(height)$. Three types of internal geometry with the same outside dimensions are tested : sample 1 (7 tube holes), sample 2 (13 tube holes) and sample 3 (7 tube holes, micro-fin). The overall heat transfer coefficient is obtained for air-to-refrigerant heat transfer, and the Wilson plot method is used to determine the heat transfer coefficient for refrigerant flow. The sample 2 and sample 3 show significantly higher performance than sample 1. The heat transfer rates for the sample 2 and sample 3 are 9% and 12% higher, respectively, than sample 1. The friction factors for the sample 2 and sample 3 are 11.9% and 2.4% higher, respectively, than sample 1.

  • PDF

Hot Metal Extru-Bending Process for Curved Aluminum Tube Products with Circular or Rectangular Sections (원형 또는 사각 단면을 가지는 알루미늄 곡관 튜브제품의 열간금속압출굽힘가공)

  • Park D. Y;Jin I. T
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.663-670
    • /
    • 2004
  • The bending phenomenon has been known to be occurred by the difference of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets through the multi-hole container. The difference of velocity at the die exit can be controlled by the two variables, the one of them is the different velocity of extrusion punch through the multi-hole container, the other is the difference of hole diameter of muliti-hole container. In this paper the difference of hole diameter is applied. So it can bend during extruding products because of the different amount of two billets when billets would be bonded in the porthole dies cavity. And the bending curvature can be controlled by the size of holes. The experiments with aluminum material for the curved tube product had been done for circular or rectangular curved tube section. The results of the experiments show that the curved tube product can be formed by the extru-bending process without the defects such as distortion of section and thickness change of wall of tube and folding and wrinkling. The curvature of product can be controlled by shape of cross section and the difference of billet diameters. And it is known that the bonding and extruding and bending process can be done simultaneously in the die cavity by the experiments that rectangular hollow curved tubes could be extruded by porthole dies with four different size billets made of aluminum material. And it shows that bending phenomenon can happen during extruding with for different billets from the analysis by DEFORM-3D.

Process Design for the Tubular Hydroforming at Elevated Temperatures (온간 하이드로포밍 공정을 위한 시스템 설계)

  • Kim, B.J.;Park, K.S.;Sohn, S.M.;Lee, M.Y.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.226-229
    • /
    • 2006
  • Process design has been performed for the warm hydroforming of light weight alloy tubes. For the heating of tubes, specially designed induction heating system has been adopted to ensure rapid heating of tubes. The induction heating system uses 30kHz frequency induction coil in order to concentrate the energy in the tube and prevent the energy loss. But the induced heat by the integrated heating system, consisting of induction coil, tube, pressure oil and dies, was normally not equally distributed over the length and circumference of the tube specimen, and consequent temperature distribution was non-uniform. So additional heating element has been inserted into the inside of the tube to maintain the forming temperature and reduce temperature drop due to heat loss to the molds. And for that heat loss, a heat insulation system has also been installed. The drop in flow stress at elevated temperatures results in lower internal pressure for hydroforming and lower clamping forces. The proposed warm hydroforming process has been successfully implemented when applying 6061 aluminum extruded tubes.

  • PDF

Effects of die cooling on change of extrusion characteristics of Al-Mn-based thin-walled flat multi-port tube (금형 냉각이 Al-Mn계 다중압출 평판관의 압출 특성 변화에 미치는 영향)

  • Young-Chul Shin;Seong-Ho Ha;Tae-Hoon Kang;Kee-Ahn Lee;Seung-Chul Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.63-71
    • /
    • 2023
  • In order to increase the extrusion production speed of aluminum, extrusion die cooling technology using liquid nitrogen has recently attracted a lot of attention. Increasing the extrusion speed increases the temperature of the bearing area of extrusion dies and the extrusion profile, which may cause defects on the surface of extruded profile. Extrusion die cooling technology is to directly inject liquid nitrogen through a cooling channel formed between the die and the backer inside the die-set. The liquid nitrogen removes heat from the die-set, and gaseous nitrogen at the exit of the channel, covers the extrusion profile of an inert atmosphere reducing the oxidation and the profile temperature. The aim of this study is to evaluate the cooling capacity by applying die cooling to extrusion of Al-Mn-based aluminum alloy flat tubes, and to investigate the effects of die cooling on the change in extrusion characteristics of flat tubes. Cooling capacity was confirmed by observing the temperature change of the extrusion profile depending on whether or not die cooling is applied. To observe changes in material characteristics due to die cooling, surface observation is conducted and microstructure and precipitate analysis are performed by FE-SEM on the surface and longitudinal cross section of the extruded flat tubes.

A Study on the Con-focal Microscope for the Surface Measurements (공초점 현미경을 이용한 물체표면 형상측정에 관한 연구)

  • 강영준;송대호;유원재;백성훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.73-81
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.