• 제목/요약/키워드: Extrudability

검색결과 29건 처리시간 0.021초

Mg, Zn, Si 성분이 7xxx 계 알루미늄 합금의 압출성에 미치는 영향 (The Effect of Mg, Zn, Si wt(%) on the Extrudability of 7xxx Al Alloy)

  • 함현욱;김병민;조훈;조형호
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.148-157
    • /
    • 1999
  • The objective of this study is to investigate the effect of three main chemical compositions(Mg, Zn, Si) on extrudability of 7xxx Al alloy with high tensile strength. A few Al alloys based on 7xxx alloys were metal mold cast with various weight*%) of Mg 0.3-1.2%, Zn 5.0-8.0% and Si 0.4-0.7%, to envestigate the effects of extrudability, as well as mechanical properties. To measure the extrudability of cast billets, maximum extrusion pressure and surface temperature at die exit before tearing occurs were obtained by experiment and simulation of thermo-viscoplastic F.E.M. Also the yield and tensile strength of extruded products were tested.

  • PDF

압출성 향상을 위한 고강도 7000계 알루미늄 합금의 제조 및 압출한계선도 (Manufacture of 7000 Al Alloy with Superior Extrudability and Its Extrusion Limit Diagram)

  • 함현욱;김병민;조훈;조형호
    • 소성∙가공
    • /
    • 제8권5호
    • /
    • pp.482-490
    • /
    • 1999
  • 7000 series Al alloy with good mechanical properties has been focused with tendency to reduce the components weight of aircraft and automobile. However, it is difficult to manufacture a sound extruded product because of segregation, grain growth, casting defect, surface defect, decreasing extrudability and so on. The objective of this study is to manufacture a new 7000 al alloy more than the extrudability of A7N01 and A7003 through controlling the weight (%) Mg, Zn, Si. Hot extrusion experiments on the axisymmetric rod are performed in 500℃ and also performed analysis of the same process using unmerical analysis method, a coupled rigid-thermoviscoplastic finite element method. Extrusion limit diagram was obtained for the developed alloy by FE-simulation in order to define the relationship of extrusion speed and initial billet temperature.

  • PDF

A7003 알루미늄 합금 압출공정의 MLCA 산정기술 (Material Life Cycle Assessment of Extrusion Process of A7003)

  • 조형호;조훈;김병민;김영직
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 제5회 압출 및 인발가공 심포지엄
    • /
    • pp.43-49
    • /
    • 2002
  • A7003 alloy has characteristics of their excellent weldability, high corrosion resistance and superior plastic working however the broadening of application for the alloy has been hampered by the lower extrudability associated by Mg content. For improvement of extrudability and enhanced recovery efficiency during Al scrap recyeling, it has been generally practiced to reduce Mg content in A7003 alloy. Therefore, it is necessary to investigate the influence of Mg content on mechanical strength and extrudability of A7003 alloy. For efficient material processing which has small amounts, life cycle assessment in material processing(MLCA) is evaluated. The quantitative analysis of energy requirements and $CO_2$ emission for production of A7003 extruded bar are estimated with different Mg content and billet pre-heating process (heating source by light oil or LPG). In particular, the estimation of energy requirements was performed within shipping and gating range (except the mining and extraction stages)to investigate the influence of the variables on energy requirements and $CO_2$ emission in detail. As Mg content increased, the flow stress and the extrusion pressure for A7003 alloy increased. It has been thought that an increment in extrusion pressure with increasing Mg content is caused by the solid solution hardening of Mg atoms in the matrix and increment in volume fraction of intermetallic compound, $Mg_2Si$. The extrudability and the tensile strength are equal to, or above that of conventional A 7003 alloy even the content of Mg varied from $1.1wt.\%\;to\;0.5wt.\%$ alloy. This means that minimizing the content of Mg in A7003 alloy can enhance recovery efficiency during Al scrap recycling. It can be quoted that rather than Mg content energy source for billet heating is a prime factor to determine the atmospheric $CO_2$ emission.

  • PDF

Evaluation of 3D concrete printing performance from a rheological perspective

  • Lee, Keon-Woo;Lee, Ho-Jae;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • 제8권2호
    • /
    • pp.155-163
    • /
    • 2019
  • The objective of this study was to derive a cementitious material for three-dimensional (3D) concrete printing that fulfills key performance functions, extrudability, buildability and bondability for 3D concrete printing. For this purpose, the rheological properties shown by different compositions of cement paste, the most fundamental component of concrete, were assessed, and the correlation between the rheological properties and key performance functions was analyzed. The results of the experiments indicated that the overall properties of a binder have a greater influence on the yield stress than the plastic viscosity. When the performance of a cementitious material for 3D printing was considered in relation with the properties of a binder, a mixture with FA or SF was thought to be more appropriate; however, a mixture containing GGBS was found to be inappropriate as it failed to meet the required function especially, buildability and extrudability. For a simple quantitative evaluation, the correlation between the rheological parameters of cementitious materials and simplified flow performance test results-time taken to reach T-150 and the number of hits required to reach T-150-in consideration of the flow of cementitious materials was compared. The result of the analysis showed a high reliability for the correlation between the rheological parameters and the time taken to reach T-150, but a low reliability for the number of hits needed for the fluid to reach T-150. In conclusion, among several performance functions, extrudability and buildability were mainly assessed based on the results obtained from various formulations from a rheological perspective, and the suitable formulations of composite materials for 3D printing was derived.

Experimental analysis on rheological properties for control of concrete extrudability

  • Lee, Hojae;Kim, Jang-Ho Jay;Moon, Jae-Heum;Kim, Won-Woo;Seo, Eun-A
    • Advances in concrete construction
    • /
    • 제9권1호
    • /
    • pp.93-102
    • /
    • 2020
  • In this study, we examined the relationship among the rheological properties, workability, and extrudability in the construction of concrete structures using additive manufacturing. We altered the component materials (binder type, water-binder (W/B) ratio, sand ratio) to assess their effect on the rheological properties experimentally. The results indicated that the W/B and sand ratios had the largest effect on the rheological properties. In particular, when the sand ratio increased, it indicated that adjusting the sand ratio would facilitate control over the rheological properties. Additionally, we compared the rheological properties with the results of a traditional workability evaluation, namely the table flow test. This indicated the possibility of inferring the rheological properties by using traditional methods. Finally, we evaluated extrusion quantity according to table flow. The extrusion rate was 350 g/s for a flow of 210 mm and 170 g/s for a flow of 130 mm, indicating that extrusion rate increased as flow increased; however, we concluded that a flow standard of approximately 140-160 mm is suitable for controlling the actual extrusion quantity and rate.

경량합금 반용융 압출 기술 개발 - Park 2. 반용융 압출 공정 기술 (Development of Thixoextrusion Process for Light Alloys - Part 2. Thixoextrusion Process for Light Alloys)

  • 김세광;윤영옥;장동인;조형호
    • 한국주조공학회지
    • /
    • 제26권5호
    • /
    • pp.217-221
    • /
    • 2006
  • The main emphasis of this study was to utilize thixoextrusion process for improving extrudability of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy. The results of thixbextrusion experiments about microstructures and extrusion pressures were compared with conventional hot extrusion results. The maximum extrusion pressure of thixoextrusion was greatly decreased compared with that of conventional hot extrusion. It was pointed out that the extrusion temperature dependence of the maximum extrusion pressure was large and the influence of extrusion temperature on the improvement of extrudability was remarkable in thixoextrusion. This will contribute to extrudability in terms of extrusion pressure, which in turn means that shorter process time is required and smaller extrusion machine can be applied for the same operation. The elongated grains to extrusion direction were generally observed during conventional hot extrusion, while the thixoextruded microstructures were isotropic.

3D 프린팅을 위한 굵은 골재가 포함된 콘크리트의 압출성 확보를 위한 배합설계 프로세스 (Mix Design Process for Securing Extrudability of Concrete Containing Coarse Aggregates for 3D Printing)

  • 이윤정;한선진;이상훈;윤수민;김강수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권1호
    • /
    • pp.24-31
    • /
    • 2024
  • 기존 대부분의 3D 콘크리트 프린팅 연구는 모르타르를 재료로 활용하고 있다. 다만, 굵은 골재를 포함한 콘크리트에 비해 모르타르를 사용할 경우에는 높은 바인더 함량과 잔골재량으로 인하여 경제성이 저하될 수 밖에 없다. 따라서, 3D 프린팅 기술의 건설산업 적용 확대를 위해서는 굵은 골재를 사용한 콘크리트 3D 프린팅에 대한 연구가 요구된다. 본 연구에서는 굵은 골재가 포함된 3D 프린팅 용 콘크리트의 배합설계 프로세스를 제안하고자 하였다. 다양한 문헌연구 및 배합실험을 참고하여 3D 프린팅에 적합한 배합을 도출하였으며, 출력실험을 통하여 압출성을 검증하였다. 콘크리트 배합의 증점제(Viscosity modifying agent, VMA) 함량을 출력실험의 변수로 설정하였으며, 출력된 필라멘트의 치수 적합성, 골재분포도, 표면 품질을 평가하여 압출성능을 검증하였다. 실험결과, VMA의 함량이 높은 배합이 더 우수한 치수 적합성과 표면 품질을 보였으며, VMA 함량이 다름에도 불구하고 모든 배합에서 골재분포가 균등하게 나타났다. 실험결과를 바탕으로 굵은 골재가 포함된 콘크리트의 압출성을 향상 시킬 수 있는 배합설계 프로세스를 도출하였다.

3D 프린터용 시멘트 복합체의 간극비가 출력성과 적층성에 미치는 영향 (The Effects of Void Ratio on Extrudability and Buildability of Cement-based Composites Produced by 3D Printers)

  • 서지석;이봉춘;김윤용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권7호
    • /
    • pp.104-112
    • /
    • 2019
  • 3D 프린팅용 시멘트 복합체 모르타르의 재료적 특성을 평가하고 굳지 않은 상태에서의 모르타르 간극비를 단일지표로 하여 프린팅이 가능한 성능 범위를 산출하였다. 시험 결과, W/B가 증가하면 모르타르 흐름값은 증가하였으며 밀도와 강도는 감소하였다. SS/B가 증가하면 모르타르 흐름값은 감소하였다. 그러나 강도와 밀도는 특정 SS/B까지 증가하다 감소하였다. Ad/B가 증가할수록 모르타르 흐름값, 밀도, 강도는 감소하였다. 이러한 경향성은 따른 3D 프린팅용 모르타르의 목표 성능 만족하기 위한 배합설계를 어렵게 한다. 한편, 간극비가 증가할수록 모르타르 흐름값은 비례적으로 증가하는 반면 밀도와 강도는 감소하는 경향을 보였으며, 그 상관성은 높게 나타났다. 이는 배합설계에 따른 재료적 특성을 제어하는 단일지표로서 간극비를 활용할 수 있음을 나타낸다. 3D 프린터로 출력 가능한 모르타르 배합범위를 시험한 결과, 간극비가 0.6~0.7일 때 출력이 가능하였다. 이를 검증하기 위해 W/B 35.0 %, SS/B 60.0 %, Ad/B 0.1%를 배합하여 간극비를 0.634로 설계했을 때 출력이 가능하였다. 그러나 3D 프린팅 출력 모르타르의 품질을 향상하기 위해서는 혼화제를 활용하는 추가적인 연구가 필요하다.

$SiC_p/6061 Al$ 복합재료의 압출가공에 있어서 압출특성 (The Extrusion Characteristics in Hor Extrusion of $SiC_p/6061 Al$ Composite)

  • 조형호
    • 한국재료학회지
    • /
    • 제4권8호
    • /
    • pp.945-951
    • /
    • 1994
  • 분말야금법으로 제조된 $SiC_{p}$/6061 Al 복합재료의 열간 압출가공에 있어서 압출성에 미치는 빌렛의 특성과 압출조건의 영향에 대하여 조사하였다. 압출가공성의 난이도를 판단 할 수 있는 기준이 되는 최대압출력과 변형저항 값($K_{w}$)은 350ton 압출기를 이용한 압출압력의 측정과 Watanabe등의 경험식에 의해 도출되었다. 6061Al합금기 복합재료 빌렛의 전단변형저항고 압출압력은 강화재($SiC_{p}$)의 부피분율이 증가함에 따라 증가하고 있으나, 증가되는 비율은$SiC_{p}$인 경두가 $SiC_{w},Al_{2}O_{3f}$/보다 작았다. 강화입자 크기가 작을 수록 변형저항 값이 증가하였고 압출성도 양호하였다. 변형저항 값의 증가는 기지금속의 가공경화에 기인하며, 최대압출력을 나타내는 피이크는 강화재의 입자가 미세할 수록, 즉 가공경호가 클 수록 뾰족한 형상을 나타내었다. 압출온도가 증가할 수록 변형저항 값이 낮아져서 작은 압출력으로도 복합재료의 압출이 가능하나, $500^{\circ}C$이상인 경우 압출재 표면에 극심한 tearing현상이 발생하였다.

  • PDF