DOI QR코드

DOI QR Code

Mix Design Process for Securing Extrudability of Concrete Containing Coarse Aggregates for 3D Printing

3D 프린팅을 위한 굵은 골재가 포함된 콘크리트의 압출성 확보를 위한 배합설계 프로세스

  • 이윤정 (서울시립대학교 건축공학과 스마트시티융합전공) ;
  • 한선진 (서울시립대학교, 건축학부 ) ;
  • 이상훈 (서울시립대학교 건축공학과 스마트시티융합전공) ;
  • 윤수민 (서울시립대학교 건축공학과 스마트시티융합전공) ;
  • 김강수 (서울시립대학교, 건축공학과 스마트시티융합전공 )
  • Received : 2023.11.30
  • Accepted : 2024.01.02
  • Published : 2024.02.28

Abstract

Mortar has been applied in most previous studies on 3D concrete printing. In such cases, however, the economic efficient cannot help decreasing due to higher binder contents and larger amount of fine aggregates. In order to enhance the applicability of 3D printing technology to construction industry, therefore, 3D concrete printing technology utilizing coarse aggregates needs to be developed further. This study aims at proposing the mix design process of concrete containing coarse aggregates for 3D printing. Based on extensive literature review and experimental studies, the mix proportion suitable for 3D printing has been derived, and the extrudability of concrete with coarse aggregates has been verified through 3D printing tests. The primary variable of the extrudability tests was the contents of viscosity modifying agent (VMA), and the extrudability was quantitatively evaluated by measuring dimensions, distribution of aggregates, and surface quality of 3D-printed filaments. The test results showed that the dimensional suitability and surface quality were improved as the VMA contents were larger, and the coarse aggregates were evenly distributed in the section of filament regardless of the VMA contents. Based on the test results, the mix design process for concrete containing coarse aggregates for 3D printing has been proposed.

기존 대부분의 3D 콘크리트 프린팅 연구는 모르타르를 재료로 활용하고 있다. 다만, 굵은 골재를 포함한 콘크리트에 비해 모르타르를 사용할 경우에는 높은 바인더 함량과 잔골재량으로 인하여 경제성이 저하될 수 밖에 없다. 따라서, 3D 프린팅 기술의 건설산업 적용 확대를 위해서는 굵은 골재를 사용한 콘크리트 3D 프린팅에 대한 연구가 요구된다. 본 연구에서는 굵은 골재가 포함된 3D 프린팅 용 콘크리트의 배합설계 프로세스를 제안하고자 하였다. 다양한 문헌연구 및 배합실험을 참고하여 3D 프린팅에 적합한 배합을 도출하였으며, 출력실험을 통하여 압출성을 검증하였다. 콘크리트 배합의 증점제(Viscosity modifying agent, VMA) 함량을 출력실험의 변수로 설정하였으며, 출력된 필라멘트의 치수 적합성, 골재분포도, 표면 품질을 평가하여 압출성능을 검증하였다. 실험결과, VMA의 함량이 높은 배합이 더 우수한 치수 적합성과 표면 품질을 보였으며, VMA 함량이 다름에도 불구하고 모든 배합에서 골재분포가 균등하게 나타났다. 실험결과를 바탕으로 굵은 골재가 포함된 콘크리트의 압출성을 향상 시킬 수 있는 배합설계 프로세스를 도출하였다.

Keywords

Acknowledgement

본 연구는 2019년도 정부(교육과학기술부)의 재원으로 한국연구재단 중견연구의 지원을 받아 수행되었습니다(과제번호: NRF-2019R1A2C2086388).

References

  1. Wang, C., Ikuma, L., Hondzinski, J., and de Queiroz, M. (2017), Application of assistive wearable robotics to alleviate construction workforce shortage: Challenges and opportunities, Journal of Computing in Civil Engineering 2017, ASCE, 358-365. 
  2. Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R., Gibb, A. G. F., and Thorpe, T. (2012(a)), Hardened properties of high-performance printing concrete. Cement and Concrete Research, PERGAMON-ELSEVIER SCIENCE LTD, 42(3), 558-566.  https://doi.org/10.1016/j.cemconres.2011.12.003
  3. Tay, Y. W. D., Panda, B., Paul, S. C., Noor Mohamed, N. A., Tan, M. J., and Leong, K. F. (2017), 3D printing trends in building and construction industry: a review, Virtual and Physical Prototyping, TAYLOR & FRANCIS LTD, 12(3), 261-276.  https://doi.org/10.1080/17452759.2017.1326724
  4. Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G. F., and Thorpe, T. (2012(b)), Mix design and fresh properties for high-performance printing concrete. Materials and Structures, SPRINGER, 45(8), 1221-1232.  https://doi.org/10.1617/s11527-012-9828-z
  5. Panda, B., and Tan, M. J. (2018), Experimental Study on Mix Proportion and Fresh Properties of Fly Ash Based Geopolymer for 3D Concrete Printing, Ceramics International, ELSEVIER SCI LTD, 44(9), 10258-10265.  https://doi.org/10.1016/j.ceramint.2018.03.031
  6. Ma, G., Li, Z., and Wang, L. (2018), Printable properties of cementitious material containing copper tailings for extrusion based 3D printing, Construction and Building Materials, ELSEVIER SCI LTD, 162, 613-627.  https://doi.org/10.1016/j.conbuildmat.2017.12.051
  7. Kazemian, A., Yuan, X., Cochran, E., and Khoshnevis, B. (2017), Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture, Construction and Building Materials, ELSEVIER SCI LTD, 145, 639-647.  https://doi.org/10.1016/j.conbuildmat.2017.04.015
  8. Rahul, A. V., Santhanam, M., Meena, H., and Ghani, Z. (2019), 3D printable concrete: Mixture design and test methods. Cement and Concrete Composites, ELSEVIER SCI LTD, 97, 13-23.  https://doi.org/10.1016/j.cemconcomp.2018.12.014
  9. Shah, H. A., Yuan, Q., and Photwichai, N. (2022), Use of Materials to Lower the Cost of Ultra-High-Performance Concrete - A Review, Construction and Building Materials, ELSEVIER SCI LTD, 327, 127045. 
  10. Lee, H., Kim, W. W., Seo, E. A., and Moon, J. H. (2020), Effect of Shrinkage Characteristics of Cement-Based Composites by Extrusion and Lamination Process of Construction 3D Printing, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(6), 113-118 (in Korean).  https://doi.org/10.11112/JKSMI.2020.24.6.113
  11. Seo, E. A., Yang, K. H., and Lee, H. J. (2022), Experimental Study for Evaluating Early Age Shrinkage of Mortar for 3D Printing, Journal of the Korea Institute for Structural Maintenance and Inspection, 26(2), 76-83 (in Korean).  https://doi.org/10.11112/JKSMI.2022.26.2.76
  12. Rahul, A. V., Mohan, M. K., De Schutter, G., and Tittelboom, K. (2022), 3D Printable Concrete with Natural and Recycled Coarse Aggregates: Rheological, Mechanical and Shrinkage Behaviour, Cement and Concrete Composites, ELSEVIER SCI LTD, 125, 104311. 
  13. Xiao, J., Ji, G., Zhang, Y., Ma, G., Mechtcherine, V., Pan, J., Wang, L., Ding, T., Duan, Z., and Du, S. (2021), Large-scale 3D printing concrete technology: Current status and future opportunities, Cement and Concrete Composites, ELSEVIER SCI LTD, 122, 104115. 
  14. Lee, Y. J., Han, S. J., Jeong, H., Kim, J. H., and Kim, K. S. (2020), Material Characteristics of Rapid Prototyping Concrete and Member Behavior, Journal of the Korea Concrete Institute, KCI, 32(1), 85-93 (in Korean).  https://doi.org/10.4334/JKCI.2020.32.1.085
  15. Jeong, H., Han, S. J., Choi, S. H., Lee, Y. J., Yi, S. T., and K. S. Kim. (2019), Rheological Property Criteria for Buildable 3D Printing Concrete, Materials, MDPI, 12(4), 657. 
  16. Ye, J., Cui, C., Yu, J., Yu, K., and Xiao, J. (2021), Fresh and anisotropic-mechanical properties of 3D printable ultra-high ductile concrete with crumb rubber, Composites Part B: Engineering, ELSEVIER SCI LTD, 211, 108639. 
  17. Chen, Y., Zhang, Y., Pang, B., Liu, Z., and Liu, G. (2021), Extrusion-based 3D printing concrete with coarse aggregate: Printability and direction-dependent mechanical performance., Construction and building materials, ELSEVIER SCI LTD, 296, 123624. 
  18. Ji, G., Ding, T., Xiao, J., Du, S., Li, J., and Duan, Z. (2019), A 3D printed ready-mixed concrete power distribution substation: Materials and construction technology. Materials, MDPI, 12(9), 1540. 
  19. Ji, G., Xiao, J., Zhi, P., Wu, Y. C., and Han, N. (2022), Effects of extrusion parameters on properties of 3D printing concrete with coarse aggregates, Construction and Building Materials, ELSEVIER SCI LTD, 325, 126740. 
  20. Liu, H., Liu, C., Bai, G., Wu, Y., He, C., Zhang, R., and Wang, Y. (2022), Influence of pore defects on the hardened properties of 3D printed concrete with coarse aggregate, Additive Manufacturing, ELSEVIER, 55, 102843. 
  21. Mechtcherine, V., Nerella, V. N., Will, F., and Nather, M. (2019), Large-Scale Digital Concrete construction-CONPrint3D Concept for on-Site, Monolithic 3D-Printing, Automation in Construction, ELSEVIER, 107, 102933. 
  22. Rahul, A. V., and Santhanam, M. (2020) Evaluating the Printability of Concretes Containing Lightweight Coarse Aggregates, Cement and Concrete Composites, ELSEVIER SCI LTD, 109, 103570. 
  23. Vespalec, A., Novak, J., Kohoutkova, A., Vosynek, P., Podrouzek, J., Skaroupka, D., Zikmund, T., Kaiser, J., and Palousek, D. (2020), Interface behavior and interface tensile strength of a hardened concrete mixture with a coarse aggregate for additive manufacturing, Materials, MDPI, 13(22), 5147. 
  24. Wang, X., Jia, L., Jia, Z., Zhang, C., Chen, Y., Ma, L., Wang, Z., Deng, Z., Banthia, N., and Zhang, Y. (2022), Optimization of 3D printing concrete with coarse aggregate via proper mix design and printing process, Journal of Building Engineering, ELSEVIER, 56, 104745. 
  25. Xiao, J., Lv, Z., Duan, Z., and Hou, S. (2022). Study on preparation and mechanical properties of 3D printed concrete with different aggregate combinations, Journal of Building Engineering, ELSEVIER, 51, 104282. 
  26. Zhang, C., Jia, Z., Wang, X., Jia, L., Deng, Z., Wang, Z., Zhang, Y. and Mechtcherine, V. (2022), A two-phase design strategy based on the composite of mortar and coarse aggregate for 3D printable concrete with coarse aggregate, Journal of Building Engineering, ELSEVIER, 54, 104672. 
  27. A. M. Neville. (1997), Properties of Concrete (4th edition), WILEY, London: Longman, 62-262.