• 제목/요약/키워드: Extremely low frequency magnetic field(ELF-MF)

검색결과 15건 처리시간 0.02초

Extremely Low Frequency Magnetic Field is an Environmental Stress Factor by Exerting Oxidative Stress

  • Park, Yong-Jin;Park, Won-Joo;Yim, Sung-Hyuk;Yang, Seong-Jun;Sun, Yuan Lu;Jeong, Ji-Hoon;Park, Eon-Sub
    • Biomolecules & Therapeutics
    • /
    • 제15권1호
    • /
    • pp.58-64
    • /
    • 2007
  • The previous study reported the biological effect of magnetic field exerted by acting on endocrine and anti-oxidant system. The present study aims to study whether ELF-MF (extremely low frequency magnetic field) affects the physiological endocrine systems such as thyroid and whether ELF-MF affects the defense system against oxidative stress when it alters the function of thyroid. Finally, we correlate the effects of MF on oxidative stress, and adrenal and thyroid with an environmental stress factor. We exposed sham or MF to rats for 5 or 25 days. After the exposure, we determined pain sensitivity, level of TSH, $T_3$ and free $T_4$ in plasma. We also assayed in whole brain, lipid peroxidation, the activity of enzymatic anti-oxidant defense including superoxide dismutase(SOD) and glutathione peroxidase (GPx), and non enzymatic defense such as reduced or oxidized glutathione contents. MF induced the hypersensitivity to thermal stimuli with the reduction of latency. $T_3$ and $T_4$ levels were also increased by the exposure of MF. In addition, we observed the rise of MDA level in rat brain by MF although the MF did not change superoxide dismutase and glutathione peroxidase activity. The effect of MF on both reduced and oxidized glutathione results in decrease in reduced or oxidized glutathione in whole brain. In every experiment, there was no significant difference in MF influence between short term (5 days) and long term (25 days) exposure. Taken together, MF exposure affects the thyroid hormonal control in brain. The elevated thyroid hormone acts on brain, leading to hyper-utilization of oxygen. This phenomenon may be correlated with oxidative stress resulting from MF exposure. In conclusion, we suggest that MF exposure may be an environmental stress by exerting oxidative stress.

Effects on G2/M Phase Cell Cycle Distribution and Aneuploidy Formation of Exposure to a 60 Hz Electromagnetic Field in Combination with Ionizing Radiation or Hydrogen Peroxide in L132 Nontumorigenic Human Lung Epithelial Cells

  • Jin, Hee;Yoon, Hye Eun;Lee, Jae-Seon;Kim, Jae-Kyung;Myung, Sung Ho;Lee, Yun-Sil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.119-124
    • /
    • 2015
  • The aim of the present study was to assess whether exposure to the combination of an extremely low frequency magnetic field (ELF-MF; 60 Hz, 1 mT or 2 mT) with a stress factor, such as ionizing radiation (IR) or $H_2O_2$, results in genomic instability in non-tumorigenic human lung epithelial L132 cells. To this end, the percentages of G2/M-arrested cells and aneuploid cells were examined. Exposure to 0.5 Gy IR or 0.05 mM $H_2O_2$ for 9 h resulted in the highest levels of aneuploidy; however, no cells were observed in the subG1 phase, which indicated the absence of apoptotic cell death. Exposure to an ELF-MF alone (1 mT or 2 mT) did not affect the percentages of G2/M-arrested cells, aneuploid cells, or the populations of cells in the subG1 phase. Moreover, when cells were exposed to a 1 mT or 2 mT ELF-MF in combination with IR (0.5 Gy) or $H_2O_2$ (0.05 mM), the ELF-MF did not further increase the percentages of G2/M-arrested cells or aneuploid cells. These results suggest that ELF-MFs alone do not induce either G2/M arrest or aneuploidy, even when administered in combination with different stressors.

송전선로 주변과 비주변 초등학생을 대상으로 극저주파 자기장 노출과 뇨중 멜라토닌 분비량간의 상관성 연구 (Relationship Between Urinary Melatonin Levels and Extremely Low Frequency Magnetic Fields for the Selected Primary Schoolchildren Living Nearby and Away from Overhead Transmission Power Line)

  • 조용성;김윤신;이종태;홍승철;장성기
    • 한국환경보건학회지
    • /
    • 제30권3호
    • /
    • pp.191-206
    • /
    • 2004
  • The present study investigated the hypothesis that a extremely low frequency magnetic field partially suppresses the synthesis of melatonin in a group of 28 primary schoolchildren living nearby and 60 primary schoolchildren aged 12 years living far away from overhead transmission power lines from December 2003 to April 2004 in Seoul, Korea. The mean personal exposure levels of the primary schoolchildren living nearby overhead transmission power line were 0.37 ${\mu}$T, whereas the value for the primary schoolchildren living away from overhead transmission power line 0.05 mT. From simple analyses, the mean melatonin levels in the primary schoolchildren living nearby were lower than away from overhead transmission power line, but not statistically significant differences in the levels of the melatonin (p=0.2421), whereas the statistically significant differences in the levels of the melatonin related to the distance from residence to power line less and more than 100 m by cut-off point (p=0.0139). In multiple linear regression analyses, distance from residence to power line (p=0.0146) and dietary habit about burned meat (p=0.0170) proved to be significant risk factors in the mean nocturnal melatonin levels in the primary schoolchildren. In conclusion, these results demonstrate that urinary levels of nocturnal melatonin are not altered in primary schoolchildren exposed to extremely low frequency magnetic field(ELF-MF) at overhead transmission power line.

개인 노출량 조사를 통한 한국인의 극저주파 자기장 노출 수준 (Estimation of ELF-MF Exposure Levels in the Korean Population through 24-Hour Personal Exposure)

  • 정준식;김근영;홍승철;조용성;김윤신
    • 한국환경보건학회지
    • /
    • 제38권1호
    • /
    • pp.18-30
    • /
    • 2012
  • Objectives: The purpose of this study was to estimate the exposure level to extremely low frequency-magnetic fields (ELF-MF) among a selected Korean population using 24-hour personal exposure measurement. Methods: Participants were randomly selected for the measurement of MF exposure under the assumption that the subjects are representative of the overall Korean population. Levels of personal exposure to MF were measured according to the subject's daily activities. Results: The 24-hour time-weighted average (TWA) of 250 participants was $1.56{\pm}4.56$ mG (GM, GSD: 0.79, 2.46 mG). Personal exposure levels for females were higher than for males. The highest personal exposure level was shown in the age group between 20-60 years old. Personal exposure levels according to job category were higher for the non-occupational group than for the occupational group. Conclusions: Our results showed MF exposure exceeding 2 mG per day among 11.3% of the Korean population, indicating a somewhat higher percentage compared to the EMF RAPID Program's results for the U.S population.