• Title/Summary/Keyword: Extremely Cohesive Soft Soil

Search Result 10, Processing Time 0.029 seconds

A Study on the Steering Characteristics of Tandem Tracked Vehicle on Extremely Cohesive Soft Soil (연약지반 직렬 무한궤도 주행차량의 선회특성 연구)

  • Kim, Hyung-Woo;Lee, Chang-Ho;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong;Kim, Sea-Moon
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.361-367
    • /
    • 2010
  • The principal objective of this paper was to evaluate the steering characteristics of a tandem tracked vehicle, each side of which features two tandem tracks, when crawling on extremely cohesive soft soil. The tandem tracked vehicle is assumed to be a rigid-body with 6-dof. The dynamic analysis program of the tandem tracked vehicle was developed via Newmark's method and the incremental-iterative method. A terra-mechanics model of extremely cohesive soft soil was implemented according to the relationships of normal pressure to sinkage, of shear resistance to shear displacement, and of dynamic sinkage to shear displacement. In order to simplify the characteristics of contact interaction between track segments and cohesive soft soil, the characteristics of soil are equated to the properties of intact soil. In an effort to evaluate the steering characteristics of a tandem tracked vehicle crawling on extremely cohesive soft soil, a series of dynamic simulations were conducted for a tandem tracked vehicle model with respect to the front and rear steering angle, the steering ratio, and the initial velocity.

Study on Steering Ratio of Four-Row Rigid Tracked Vehicle on Extremely Cohesive Soft Soil Using Numerical Simulation (수치해석을 이용한 연약지반 4열 강체 무한궤도 차량의 최적 선회비 연구)

  • Kim, Hyung-Woo;Lee, Chang-Ho;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong;Min, Cheon-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.81-89
    • /
    • 2013
  • This paper considers the steering characteristics of a four-row tracked vehicle crawling on extremely cohesive soft soil, where each side is composed of two parallel tracks. The four-row tracked vehicle (FRTV) is assumed to be a rigid body with 6-DOF. A dynamic analysis program for the tracked vehicle is developed using the Newmark-${\beta}$ method based on an incremental-iterative scheme. A terra-mechanics model of an extremely cohesive soft soil is implemented in the form of the relationships of the normal pressure to the sinkage, the shear resistance to the shear displacement, and the dynamic sinkage to the shear displacement. In order to investigate the steering characteristics of the four-row tracked vehicle, a series of dynamic simulations is conducted with respect to the distance between the left and right tracks (pitch), steering ratios, driving velocity, reference track velocity, lengths of the tracks, and properties of the cohesive soft soil. Through these numerical simulations, the possibility of using a kinematic steering ratio is explored.

A Study on Dynamic Responses of Tracked Vehicle on Extremely Soft Cohesive Soil (점착성 연약지반 주행차량의 동적거동 연구)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.323-332
    • /
    • 2004
  • This paper concerns about a study on dynamic responses of tracked vehicle on soft cohesive soil. For dynamic analyses of tracked vehicle, two different models were adopted, i.e. a single-body model and a multi-body model. The single-body vehicle model was assumed as a rigid body with 6-dof. The multi-body vehicle was modeled by using a commercial software, RecurDyn-LM. For the both models properties of cohesive soft soil were modeled by means of three relationships: pressure to sinkage, shear displacement to shear stress, and shear displacement to dynamic sinkage. Traveling performances of the two tracked vehicle models were compared through dynamic analyses in time domain.

Dynamic Analysis of Tracked Vehicle by Buoy Characteristics (부이 특성에 따른 궤도 차량 동적 거동)

  • Kim, Hyung-Woo;Min, Cheon-Hong;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Oh, Jae-Won
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.495-503
    • /
    • 2014
  • This paper focuses on the dynamic responses of a tracked vehicle crawling on extremely cohesive soft soil, each side of which is composed of two parallel tracks. The tracked vehicle consisted of 2 bodies. One body is the tracked vehicle body, which is assumed to be a rigid body with 6 DOFs. The other body is the buoy body. The two bodies are connected by a revolute joint. In order to evaluate the travelling performance of a 7 DOFs vehicle, a dynamic analysis program for the tracked vehicle was developed using Newmark's method and the incremental-iterative method. The effects of road wheels on the track and soil are not taken into account. A terra-mechanics model of extremely cohesive soft soil is implemented in form of relationships: normal pressure to sinkage, shear resistance to shear displacement, and dynamic sinkage to shear displacement. Pressure-sinkage relationship and shear displacement-stress relationship should represent the non-linear characteristics of extremely soft soil. Especially, since the shear resistance of soft soil is very sensitive to shear displacement, spatial distribution of shear displacement occurring at the contact area of the tracks should be calculated precisely. The proposed program is developed in FORTRAN.

Study of Deepsea Mining Robot "MineRo" Using Table of Orthogonal Arrays (직교 배열표를 이용한 심해저 채광로봇 미내로의 주행 특성 연구)

  • Lee, Chang-Ho;Kim, Hyung-Woo;Choi, Jong-Su;Yeu, Tae-Kyeong;Lee, Min-Uk;Oh, Jae-Won;Hong, Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.152-159
    • /
    • 2014
  • KRISO(Korea Research Institute of Ships & Ocean Engineering) designed and manufactured a pilot mining robot called "MineRo" in 2012. MineRo is composed of four track modules. In general, much time and money are needed for deep-sea tests. Therefore, a numerical analysis to predict the dynamic behaviors has to be performed before a deep-sea test. In the numerical analysis, the information about the mining robot and soil properties are the most important factors to analyze the driving performance and dynamic response of MineRo. A terra-mechanics model of extremely cohesive soft soil is implemented in the form of the relationships between the normal pressure and sinkage, and between the shear stress and shear displacement. It is possible to acquire information about MineRo from the CAD model in the design phase. The Wong model is applied to the terra-mechanics model. This model is necessary to acquire many soil coefficients for a numerical analysis. However, in soil testing, the amount of soil property data obtained is limited. Moreover, it is difficult to analyze all of the cases for the many soil coefficients. In this paper, the dynamic behaviors of MineRo are analyzed according to the driving velocity, steering ratio, and variable extremely cohesive soft soil properties using a table of orthogonal arrays. The dynamic responses of MineRo are the turning radius, sinkage, and slip ratio. The relationships between the dynamic responses and variable soil properties are derived for MineRo.

An Experimental Study on Steering Performance of Tracked Vehicle on Deep-sea Cohesive Soft Soil by DOE using Orthogonal Arrays (직교배열표 실험계획법에 의한 심해저 점착성 연약지반용 무한궤도차량의 선회성능에 대한 실험 연구)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.37-42
    • /
    • 2006
  • This paper is concerned with experimental investigation of steering performance of a tracked vehicle on extremely soft soil. A tracked vehicle model with principal dimensions of 0.9 m(L)x0.75 m(B)x0.4 m(H) and weight of 167 kg was constructed with a pair of driving chain links, driven by two AC-servo motors. The tracks were configured with detachable grousers with variable span. A deep seabed was simulated by means of a bentonite-water mixture in a soil bin of 6.0 m(L)x3.7 m(B)x0.7 m(H). The turning radii of vehicle and driving torques of motors were measured with respect to experiment variables: steering ratio, driving speed, grouser chevron angle, grouser span, and grouser height. L8 orthogonal table is adopted for DOE (Design of experiment). The effects of experiment variables on steering performance are evaluated.

An Experimental Study about Tractive Performance of Tracked Vehicle on Deep-sea Soft Sediment Based on Design of Experiment Using Orthogonal Array (직교배열표 실험계획법에 의한 심해 연약지반용 무한궤도차량의 견인성능에 대한 실험적 연구)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Lee, Tae-Hee
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.333-339
    • /
    • 2004
  • This paper is concerned with an experimental investigation about tractive performance of a tracked vehicle on extremely soft soil. A tracked vehicle model with principal dimensions of $0.9\;m(L)\;{\times}\;0.75\;m(B)\;{\times}\;0.4\;m(H)$ and the weight of 167 kg was constructed with a pair of driving chain links driven by two AC-servo motors. The tracks are configured with detachable grousers with variable span. Deep seabed was simulated by means of bentonite-water mixture in a soil bin of $6.0\;m(L)\;{\times}\;3.7\;m(B)\;{\times}\;0.7\;m(H)$. Slip of vehicle and driving torque of motor were measured with respect to experimental variables; grouser span, grouser chevron angle, driving speed, drawbar-pull weight, position of center-of-gravity and weight. $L_8$ orthogonal array is adopted for DOE (Design Of Experiment). The effects of experiment variables on traction performance are evaluated.

An Experimental Study on Steering Performance of Seafloor Tracked Vehicle Based on Design Of Experiment Using Orthogonal Array (직교행렬 실험계획법에 의한 해저연약지반 선회성능실험 연구)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.250-253
    • /
    • 2003
  • This paper concerns about an experimental investigation about steering performance of tracked vehicle on extremely soft soil based on DOE(Design Of Experiment) using L8 orthogonal Array. A tracked vehicle model with principal dimensions of $0.9m{\times}0.8m{\times}0.4m$ and weight 167kg was constructed with a pair of driving chain links driven by two AC-servo motors. The tracks are configured with detachable grousers, the span of which can be varied. Deep seabed was simulated by means of bentonite-water mixture in a soil bin of $6.0m{\times}3.7m{\times}0.7m$. Turning radii of vehicle and torques of motors were measured with respect to experimental variables; steering ratio, driving speed, grouser chevron angle, grouser span, grouser height. The effects of experiment variables on steering performance are evaluated.

  • PDF

Total Dynamic Analysis of Deep-Seabed Integrated Mining System (심해저 광물자원 채광시스템의 통합거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.311-314
    • /
    • 2006
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely soft cohesive soil is applied to the self-propelled miner. The hydrodynamic forces and moments are included in the dynamic models of vehicle and lifting pipe system. Hinged and fixed constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-b method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.

  • PDF

Total Dynamic Analysis of Deep-Seabed Integrated Mining System (심해저 광물자원 채광시스템의 통합거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Lee, Chang-Ho;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.195-203
    • /
    • 2010
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely cohesive soft soil is applied to the self-propelled miner. Hinged and ball constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, self-propelled miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-${\beta}$ method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.