• 제목/요약/키워드: Extreme-Pressure

검색결과 314건 처리시간 0.026초

프리스트레스트 콘크리트 관형 구조물의 폭발량에 따른 내부폭발저항성능에 관한 실험적 평가 (Experimental Evaluation of Internal Blast Resistance of Prestressed Concrete Tubular Structure according to Explosive Charge Weight)

  • 최지훈;최승재;양달훈;김장호
    • 대한토목학회논문집
    • /
    • 제39권3호
    • /
    • pp.369-380
    • /
    • 2019
  • PSC 구조물에 폭발과 같은 극한하중이 짧은 시간 동안 발생하게 되면 급작스러운 파괴와 그로 인한 수많은 인명 및 재산피해를 발생시킨다. 하지만 원전격납구조물, 가스탱크와 같은 PSC 구조물의 경우 방호 및 방재개념이 포함된 구조설계가 적용되지 않은 실정이며, 특히, 구조물 내부에서 발생하는 폭발압력하중은 피해규모가 외부폭발에 비해 훨씬 크기 때문에 내부폭발하중에 대한 검증은 반드시 필요하다. 따라서, 본 연구에서는 원전격납구조물의 내부폭발에 대한 저항성능을 검토하기 위해 이방향 프리스트레스트 콘크리트 축소모형을 제작하였다. 내부폭발 실험은 22.68, 27.22, 31.75 kg (50, 60, 70 lbs)의 ANFO 폭약을 이용하여 시편으로부터 1,000 mm의 거리에서 폭발시켰으며, 압력하중, 처짐, 변형률, 균열형상, 긴장력 변화 등의 데이터를 분석하였다. 본 연구결과를 이용하여 원전격납구조물의 내부폭발하중 발생 시 손상도 범위 예측이 가능할 것으로 판단된다.

Non-Gaussian features of dynamic wind loads on a long-span roof in boundary layer turbulences with different integral-scales

  • Yang, Xiongwei;Zhou, Qiang;Lei, Yongfu;Yang, Yang;Li, Mingshui
    • Wind and Structures
    • /
    • 제34권5호
    • /
    • pp.421-435
    • /
    • 2022
  • To investigate the non-Gaussian properties of fluctuating wind pressures and the error margin of extreme wind loads on a long-span curved roof with matching and mismatching ratios of turbulence integral scales to depth (Lux/D), a series of synchronized pressure tests on the rigid model of the complex curved roof were conducted. The regions of Gaussian distribution and non-Gaussian distribution were identified by two criteria, which were based on the cumulative probabilities of higher-order statistical moments (skewness and kurtosis coefficients, Sk and Ku) and spatial correlation of fluctuating wind pressures, respectively. Then the characteristics of fluctuating wind-loads in the non-Gaussian region were analyzed in detail in order to understand the effects of turbulence integral-scale. Results showed that the fluctuating pressures with obvious negative-skewness appear in the area near the leading edge, which is categorized as the non-Gaussian region by both two identification criteria. Comparing with those in the wind field with matching Lux/D, the range of non-Gaussian region almost unchanged with a smaller Lux/D, while the non-Gaussian features become more evident, leading to higher values of Sk, Ku and peak factor. On contrary, the values of fluctuating pressures become lower in the wind field with a smaller Lux/D, eventually resulting in underestimation of extreme wind loads. Hence, the matching relationship of turbulence integral scale to depth should be carefully considered as estimating the extreme wind loads of long-span roof by wind tunnel tests.

초고온 시스템용 SiCN 마이크로 구조물 제작 (Fabrication SiCN micro structures for extreme high temperature systems)

  • 판 투이 탁;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.216-216
    • /
    • 2009
  • This paper describes a novel processing technique for the fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for extreme microelectromechanical system (MEMS) applications. A polydimethylsiloxane (PDMS) mold was formed on an SU-8 pattern using a standard UV photolithographic process. Next, the liquid precursor, polysilazane, was injected into the PDMS mold to fabricate free-standing SiCN microstructures. Finally, the solid polymer SiCN microstructure was cross-linked using hot isostatic pressure at $400^{\circ}C$ and 205 bar. The optimal pyrolysis and annealing conditions to form a ceramic microstructure capable of withstanding temperatures over $1400^{\circ}C$ were determined. Using the optimal process conditions, the fabricated SiCN ceramic microstructure possessed excellent characteristics includingshear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}\;{\Omega}$, and BDV (1.2 kV, minimum). Since the fabricated ceramic SiCN microstructure has improved electrical and physical characteristics compared to bulk Si wafers, it may be applied to harsh environments and high-power MEMS applications such as heat exchangers and combustion chambers.

  • PDF

전투차량 냉각수 호스 분리현상 개선에 관한 연구 (A Study on the Improvement of the Separation Phenomenon of Coolant Hose in the Tracked Combat Vehicle)

  • 강태우;신헌용;류정민;박경철;김재규;이헌기
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.59-64
    • /
    • 2018
  • In general, tracked combat vehicles require excellent output performance of a power unit system to drive on special terrains and in extreme environmental conditions. However, high temperature and pressure are readily applied to the coolant hose in the power unit of the vehicles during high-speed driving under extreme road and weather conditions. These driving conditions can cause the separation phenomenon of the coolant hose in the power unit and consequentially engine overheating during driving. Therefore, a newly designed decompression device for the coolant hose has been proposed and manufactured to solve these problems in the present study. To validate of the newly proposed decompression device, the input and output pressures were measured under the before- and after-improvement conditions using experimental methods for different engine RPMs. In addition, the pre-heater temperature was measured under both conditions. From the experimental results, we expect that the current investigation can help to improve the driving performance of tracked combat vehicles.

Separation of dissolved gases from water using synthesized gases based on exhalation characteristics

  • Heo, Pil Woo;Park, In Sub
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1347-1353
    • /
    • 2014
  • It's possible for a human to breathe under water, if dissolved oxygen is effectively used. Fish can stay under water using the gill which extracts dissolved oxygen from water. Water includes small amounts of oxygen, so a human needs larger amounts of water to acquire oxygen enough for underwater breathing. The exhalation gas from a human is another method to get higher amounts of oxygen under water. It mainly composes of oxygen, nitrogen and carbon dioxide. So, if only carbon dioxide is decreased, the exhalation gas has good characteristics for breathing of a human under water. In this paper, composition of the exhalation gas from a human was analyzed using GC. Based on these results, the synthesized gas was prepared and mixed into water which was used for experimental devices to analyze separation characteristics of dissolved gases from water. Experimental devices included a water pump, a hollow fiber membrane module and a vacuum pump. The effects of pressure and water flow on separation characteristics of synthesized gas were investigated. The compositions of gases separated from water using synthesized gas were investigated using GC. These results expect to be applied to the development of underwater breathing technology for a human.

Measurement of EUV (Extreme Ultraviolet) and electron temperature in a hypocycloidal pinch device for EUV lithography

  • Lee, Sung-Hee;Hong, Young-June;Choi, Eun-Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.108-108
    • /
    • 2010
  • We have generated Ne-Xe plasma in dense plasma focus device with hypocycloidal pinch for extreme ultraviolet (EUV) lithography and investigated an electron temperature. We have applied an input voltage 4.5 kV to the capacitor bank of 1.53 uF and the diode chamber has been filled with Ne-Xe(30%) gas in accordance with pressure. If we assumed that the focused plasma regions satisfy the local thermodynamic equilibrium (LTE) conditions, the electron temperature of the hypocycloidal pinch plasma focus could be obtained by the optical emission spectroscopy (OES). The electron temperature has been measured by Boltzmann plot. The light intensity is proportion to the Bolzman factor. We have been measured the electron temperature by observation of relative Ne-Xe intensity. The EUV emission signal whose wavelength is about 6~16 nm has been detected by using a photo-detector (AXUV-100 Zr/C, IRD) and the line intensity has been detected by using a HR4000CG Composite-grating Spectrometer.

  • PDF

풍하중의 변동성을 고려한 LNG 하역구조물의 신뢰성해석 (Reliability analysis of LNG unloading arm considering variability of wind load)

  • 김동현;임종권;고재필
    • 한국강구조학회 논문집
    • /
    • 제19권2호
    • /
    • pp.223-231
    • /
    • 2007
  • 풍속의 확률분포를 고려한 통영생산기지 LNG 하역설비인 Unloading arm의 신뢰성해석을 수행하였다. 기상대의 풍속 관측기록을 이용하여 풍속의 극치분포를 추정하였으며 구조물에 가해지는 풍하중은 풍속과 풍압계수를 적용한 분포하중으로 고려하였다. 하역설비는 판요소와 입체요소를 이용하여 모델링하였고 지면접촉부는 접촉요소를 이용하여 압축력에만 저항하도록 하였다. 신뢰성해석을 위해서 주요부위의 최대응력을 표현하는 응답면을 구하였으며 이 값이 허용응력 및 항복응력을 초과하는지의 여부를 신뢰함수로 정의하여 파괴확률을 구하였다. 또한, 재료강도의 저하가 파괴확률에 미치는 영향을 파악하기 위하여 민감도 분석을 수행하였다.

A Model to Identify Expeditiously During Storm to Enable Effective Responses to Flood Threat

  • Husain, Mohammad;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권5호
    • /
    • pp.23-30
    • /
    • 2021
  • In recent years, hazardous flash flooding has caused deaths and damage to infrastructure in Saudi Arabia. In this paper, our aim is to assess patterns and trends in climate means and extremes affecting flash flood hazards and water resources in Saudi Arabia for the purpose to improve risk assessment for forecast capacity. We would like to examine temperature, precipitation climatology and trend magnitudes at surface stations in Saudi Arabia. Based on the assessment climate patterns maps and trends are accurately used to identify synoptic situations and tele-connections associated with flash flood risk. We also study local and regional changes in hydro-meteorological extremes over recent decades through new applications of statistical methods to weather station data and remote sensing based precipitation products; and develop remote sensing based high-resolution precipitation products that can aid to develop flash flood guidance system for the flood-prone areas. A dataset of extreme events has been developed using the multi-decadal station data, the statistical analysis has been performed to identify tele-connection indices, pressure and sea surface temperature patterns most predictive to heavy rainfall. It has been combined with time trends in extreme value occurrence to improve the potential for predicting and rapidly detecting storms. A methodology and algorithms has been developed for providing a well-calibrated precipitation product that can be used in the early warning systems for elevated risk of floods.

Tunable compression of wind tunnel data

  • Possolo, Antonio;Kasperski, Michael;Simiu, Emil
    • Wind and Structures
    • /
    • 제12권6호
    • /
    • pp.505-517
    • /
    • 2009
  • Synchronous wind-induced pressures, measured in wind-tunnel tests on model buildings instrumented with hundreds of pressure taps, are an invaluable resource for designing safe buildings efficiently. They enable a much more detailed, accurate representation of the forces and moments that drive engineering design than conventional tables and graphs do. However, the very large volumes of data that such tests typically generate pose a challenge to their widespread use in practice. This paper explains how a wavelet representation for the time series of pressure measurements acquired at each tap can be used to compress the data drastically while preserving those features that are most influential for design, and also how it enables incremental data transmission, adaptable to the accuracy needs of each particular application. The loss incurred in such compression is tunable and known. Compression rates as high as 90% induce distortions that are statistically indistinguishable from the intrinsic variability of wind-tunnel testing, which we gauge based on an unusually large collection of replicated tests done under the same wind-tunnel conditions.

열동력 시스템 내부 열교환 표면의 클리닝에 관한 연구 (A study of cleaning of heat transfer surface in thermal power system)

  • 한규일
    • 수산해양기술연구
    • /
    • 제51권4호
    • /
    • pp.576-582
    • /
    • 2015
  • The efficiencies of thermal power system using fossil fuel depend on heat exchangers which extract energy from the exhaust gas before it is expelled to the atmosphere. To increase heat transfer efficiency it is very important to maintain the surface of heat exchanger as clean condition. The accepted skill of cleaning of fouled surface of heat exchanger is soot blowing. A high pressure jet of air is forced through the flat surface of plate to remove the deposit of fouling. There is, however, little knowledge of the fundamental principles of how the jet behave on the surface and how the jet actually removes the deposit. Therefore, the study focuses on the measuring of cleaning area and cleaning dwell time after accumulating the simulated deposit on the flat surface. The deposit test rig was built for the study and simulated deposit material is used after measuring the physical property of the each material by shearing stress test. Much data was obtained for the analysis by the parameters change such as the different jet speed, different inner pressure and variable distance of the jet from the test rig surface. The experimental data was compared with the theoretical equation and most of the data matches well except some extreme cases.