• Title/Summary/Keyword: Extreme condition

Search Result 410, Processing Time 0.021 seconds

Improvement of Repeatability during Dielectric Etching by Controlling Upper Electrode Temperature (Capacitively Coupled Plasma Source를 이용한 Etcher의 상부 전극 온도 변화에 따른 Etch 특성 변화 개선)

  • Shin, Han-Soo;Roh, Yong-Han;Lee, Nae-Eung
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.322-326
    • /
    • 2011
  • Etch process of silicon dioxide layer by using capacitively coupled plasma (CCP) is currently being used to manufacture semiconductor devices with nano-scale feature size below 50 nm. In typical CCP plasma etcher system, plasmas are generated by applying the RF power on upper electrode and ion bombardment energy is controlled by applying RF power to the bottom electrode with the Si wafer. In this case, however, etch results often drift due to heating of the electrode during etching process. Therefore, controlling the temperature of the upper electrode is required to obtain improvement of etch repeatability. In this work, we report repeatability improvement during the silicon dioxide etching under extreme process conditions with very high RF power and close gap between upper and bottom electrodes. Under this severe etch condition, it is difficult to obtain reproducible oxide etch results due to drifts in etch rate, critical dimension, profile, and selectivity caused by unexpected problems in the upper electrode. It was found that reproducible etch results of silicon dioxide layer could be obtained by controlling temperature of the upper electrode. Methods of controlling the upper electrode and the correlation with etch repeatability will be discussed in detail.

Projecting the Potential Distribution of Abies koreana in Korea Under the Climate Change Based on RCP Scenarios (RCP 기후변화 시나리오에 따른 우리나라 구상나무 잠재 분포 변화 예측)

  • Koo, Kyung Ah;Kim, Jaeuk;Kong, Woo-seok;Jung, Huicheul;Kim, Geunhan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.6
    • /
    • pp.19-30
    • /
    • 2016
  • The projection of climate-related range shift is critical information for conservation planning of Korean fir (Abies koreana E. H. Wilson). We first modeled the distribution of Korean fir under current climate condition using five single-model species distribution models (SDMs) and the pre-evaluation weighted ensemble method and then predicted the distributions under future climate conditions projected with HadGEM2-AO under four $CO_2$ emission scenarios, the Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0 and 8.5. We also investigated the predictive uncertainty stemming from five individual algorithms and four $CO_2$ emission scenarios for better interpretation of SDM projections. Five individual algorithms were Generalized linear model (GLM), Generalized additive model (GAM), Multivariate adaptive regression splines (MARS), Generalized boosted model (GBM) and Random forest (RF). The results showed high variations of model performances among individual SDMs and the wide range of diverging predictions of future distributions of Korean fir in response to RCPs. The ensemble model presented the highest predictive accuracy (TSS = 0.97, AUC = 0.99) and predicted that the climate habitat suitability of Korean fir would increase under climate changes. Accordingly, the fir distribution could expand under future climate conditions. Increasing precipitation may account for increases in the distribution of Korean fir. Increasing precipitation compensates the negative effects of increasing temperature. However, the future distribution of Korean fir is also affected by other ecological processes, such as interactions with co-existing species, adaptation and dispersal limitation, and other environmental factors, such as extreme weather events and land-use changes. Therefore, we need further ecological research and to develop mechanistic and process-based distribution models for improving the predictive accuracy.

Negative Corona Onset Characteristic of the UHV Conductors Based on the Corona Cage

  • Liu, Yun-Peng;Zhu, Lei;Lv, Fang-Cheng;Xie, Xiongjie
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2089-2097
    • /
    • 2014
  • Negative corona onset characteristics of the stranded conductors based on the ultra-high voltage (UHV) corona cage were studied in the paper. Based on the corona self-sustaining criterion in extreme uneven electric fields and the secondary emission process of the photoelectrons, the corona onset calculation model in the UHV corona cage is established and the corona current tests of the single LGJ900-75, 6 bundle LGJ900-75, 8 bundle LGJ400-35 conductors in dry and rain conditions were done in the UHV corona cage, and the rain rates are 2.4 mm/h, 20 mm/h and 30 mm/h. Corona onset electric field strength is gained by E-I tangent method, and the onset electric field strength in dry condition proves that the calculation model can be used to calculate the corona onset characteristics of the bundle conductors in the UHV corona cage. A further analysis proves that: the negative corona onset voltage of the conductor increases with the bundle number and the diameter of the sub conductor, but decreases with the bundle space in the corona cage. The onset electric field strength is influenced little by bundle space and bundle number, but decreases with the increase of the diameter of the sub-conductor. The surface irregularity coefficient decreases with the rain rate.

Significance of Viable but Nonculturable Escherichia coli: Induction, Detection, and Control

  • Ding, Tian;Suo, Yuanjie;Xiang, Qisen;Zhao, Xihong;Chen, Shiguo;Ye, Xingqian;Liu, Donghong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.417-428
    • /
    • 2017
  • Diseases caused by foodborne or waterborne pathogens are emerging. Many pathogens can enter into the viable but nonculturable (VBNC) state, which is a survival strategy when exposed to harsh environmental stresses. Pathogens in the VBNC state have the ability to evade conventional microbiological detection methods, posing a significant and potential health risk. Therefore, controlling VBNC bacteria in food processing and the environment is of great importance. As the typical one of the gram-negatives, Escherichia coli (E. coli) is a widespread foodborne and waterborne pathogenic bacterium and is able to enter into a VBNC state in extreme conditions (similar to the other gram-negative bacteria), including inducing factors and resuscitation stimulus. VBNC E. coli has the ability to recover both culturability and pathogenicity, which may bring potential health risk. This review describes the concrete factors (nonthermal treatment, chemical agents, and environmental factors) that induce E. coli into the VBNC state, the condition or stimulus required for resuscitation of VBNC E. coli, and the methods for detecting VBNC E. coli. Furthermore, the mechanism of genes and proteins involved in the VBNC E. coli is also discussed in this review.

Spatial and Temporal Analysis of Drought Using the Storage Data of Agricultural Reservoirs in Chungnam Province in 2015 (농업용 저수지 저수율을 이용한 충남지역 2015년 가뭄 분석)

  • Kim, Sorae;Jang, Min-Won;Kim, Soojin;Bae, Seungjong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.29-36
    • /
    • 2017
  • The objective of this study was to analyze the temporal and spatial characteristics of agricultural drought by tracking the daily reservoir storage in Chungnam province. All daily records of the percent of reservoir storage from 2000 to 2015 were collected for 130 irrigation reservoirs from the RIMS (Rural Infrastructure Management System). The temporal change of province-wide average reservoir storage and the statistics showed that the annual average and minimum percent of reservoir storage in 2015 were extremely low like as those in the historical drought years of 2001 and 2012. The minimum reservoir storage on record was a 41 % at the end of September and remained far less than its historical average even until the end of the year. Furthermore, the annual average reservoir storage (68.3 %) recorded the lowest on record since 2000. In addition, about half of 130 major irrigation reservoirs in Chungnam fell into the risk of water shortage below 30 % full, and, in terms of annual minimum reservoir storage, the 79 reservoirs yielded lower storage in 2015 comparing with the measured in another drought year, 2001. On the other hand, irrigation reservoirs of comparatively worse storage condition revealed to be mostly located on the inside, such as Cheongyang-gun and Hongsung-gun. Conclusively, the low reservoir storage, still far below average even on December 2015, induced a serious concern about that more extreme drought would happen in the next spring.

Dimethylsulfide (DMS) in the Coastal Areas of the Cheju Island, Korea (제주도 연안해역을 중심으로 한 DMS 농도의 관측)

  • 김기현;이강웅;허철구;강창희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.161-170
    • /
    • 1997
  • The concentrations of dimethylsulfide (DMS) were determined using samples collected from a station located at Kosan, Cheju Island during two field campaigns held in December 1996 and January 1997. The atmospheric DMS concentrations measured at 6-hr intervals during the entire campaign periods, after excluding a few extreme values, spanned in the range of 14 to 410 pptv with mean and 1 SD value of 127 $\pm$ 94 pptv (N=42). Between two month periods during which the field campaigns were conducted, a notable reduction in DMS levels was observed which was comparable to the dramatic shift in air temperature. A considerable difference was also noted in DMS levels, when data were grouped by day/night basis. The cause of unexpected, high day-to-night DMS ratios is best explained in terms of high efficiency of daytime source processes relative to low efficiency of nighttime sink processes due to the characteristics of the study location. The surface water DMS of the study site, although scarcely measured, also behaved similarly to its atmospheric counterpart with its range from 0.3 to 19 nM (N=11). When correlation analysis was conducted between the atmospheric DMS concentration and other concurrently determined parameters, significant correlations were observed from most basic meteorological parameters such as windspeed, relative humidy, and air temperature. However, the existence of "not-so-strong" correlations between air temperature and DMS concentrations relative to other ones indicated that the effect of temperature on DMS behavior must be reflected in more complicated manners at the study site. The sea-to-air flux of DMS was approximated through an application of the mass-balance flux calculation method of Wylie and de Mora (1996) under the assumption that sink mechanism within the marine boundary layer is in steady-state condition with its counterpart, source mechanism. Based on this estimation method, we reached a conclusion that oceanic DMS emitted from the southwest sea of the Korean Peninsula can amount to approximately 9 $\sim$ 36 Gg S $yr^{-1}$.$yr^{-1}$.

  • PDF

MTF Assessment and Image Restoration Technique for Post-Launch Calibration of DubaiSat-1 (DubaiSat-1의 발사 후 검보정을 위한 MTF 평가 및 영상복원 기법)

  • Hwang, Hyun-Deok;Park, Won-Kyu;Kwak, Sung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.573-586
    • /
    • 2011
  • The MTF(modulation transfer function) is one of parameters to evaluate the performance of imaging systems. Also, it can be used to restore information that is lost by a harsh space environment (radioactivity, extreme cold/heat condition and electromagnetic field etc.), atmospheric effects and falloff of system performance etc. This paper evaluated the MTF values of images taken by DubaiSat-1 satellite which was launched in 2009 by EIAST(Emirates Institute for Advanced Science and Technology) and Satrec Initiative. Generally, the MTF was assessed using various methods such as a point source method and a knife-edge method. This paper used the slanted-edge method. The slantededge method is the ISO 12233 standard for the MTF measurement of electronic still-picture cameras. The method is adapted to estimate the MTF values of line-scanning telescopes. After assessing the MTF, we performed the MTF compensation by generating a MTF convolution kernel based on the PSF(point spread function) with image denoising to enhance the image quality.

The Effect of Open Ratio of the Inlet Baffle on Hydraulic Behavior within a Rectangular Sedimentation Basin (장방형 침전지 유입 정류벽 유공비의 지내 수리거동에 미치는 영향 연구)

  • Park, No-Suk;Kim, Seong-Su;Lim, Sung-Eun;Lee, Doo-Jin;Seo, In-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.345-352
    • /
    • 2009
  • The purpose of inlet baffle is to distribute the flow uniformly over the entire cross-sectional area of the sedimentation basin. The goal when designing this baffle is to achieve some head loss while keeping the velocity gradients through the ports equal to the velocity gradient in the end of the flocculator, so as to not break up the flocs. Sedimentation tank performance is strongly influenced by hydrodynamic and physical effects such as inlet design. This study was conducted to evaluate the effect of open ratio of the inlet baffle on hydraulic behavior within a rectangular sedimentation basin using CFD simulation and ADV technique. In order to verify the CFD simulation, we measured the factual velocity at 18 points in the full-scale sedimentation basin at Y water treatment plant. Good agreement was obtained between the CFD predictions and the experimentally measured data. From the simulation results of the existing basin with 7.4 % open ratio, it was investigated that extreme decrease in velocity occurred in the middle of basin. Since then, flow features was unstable. The region which the velocity decrease rapidly moved forward to the flow direction in proportion to the increase of inflow velocity. Also, it was investigated that the flow characteristic of 6.0 % open ratio was significantly different from 7.4 % open ratio at the same configuration condition. These results are a clear indication that inflow momentum and open ratio are the parameters affecting the characteristics of hydraulic patterns. The influence of these parameters on the sedimentation performance requires further study.

The use of spectroscopic Ellipsometey for the observation of diamond thin film growth by microwave plasma chemical vapor deposition (마이크로웨이브 플리즈마 화학기상증착에 의한 다이아몬드 박막의 성장 관찰을 위한 분광 Ellipsometry의 이용)

  • 홍병유
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.240-248
    • /
    • 1998
  • The plasma chemical vapor deposition is one of the most utilized techniques for the diamond growth. As the applications of diamond thin films prepared by plasma chemical vapor deposition(CVD) techniques become more demanding, improved fine-tuning and control of the process are required. The important parameters in diamond film deposition include the substrate temperature, $CH_4/H_2$ gas flow ratio, total, gas pressure, and gas excitation power. With the spectroscopic ellipsometry, the substrate temperature as well as the various parameters of the film can be determined without the physical contact and the destructiveness under the extreme environment associated with the diamond film deposition. It is introduced how the real-time spectroscopic ellipsometry is used and the data are analyzed with the view of getting the growth condition and the accompanied features for a good quality of diamond films. And it is determined the important parameters during the diamond film growth, which include the final sample will be measured with Raman spectroscopy to confirm the diamond component included in the film.

  • PDF

Study on Structural Characteristic for Durability Insurance of Turbopump Turbine (터보펌프 터빈의 내구성 확보를 위한 구조적 특성 연구)

  • Lee, Mu-Hyoung;Jang, Byung-Wook;Kwon, Jeong-Sik;Kim, Jin-Han;Jeong, Eun-Hwan;Jeon, Seong-Min;Lee, Soo-Yong;Park, Jung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.382-386
    • /
    • 2009
  • The life of a component decreases when it was exposed at the extreme condition. A turbine blade of a turbopump used for a liquid rocket engine is operated under the environment of high temperature and pressure, and experienced high centrifugal force. Thus the durability of the turbopump operated under the these conditions become lower than expected because of the severe fatigue and creep influence. The damage of the turbine being considered the fatigue and the creep influence is estimated to ensure the durability of turbopump turbine. ABAQUS/CAE and MSC.Fatigue are used for the fatigue analysis, and Larson-Miller parameter and robinson's rule are used for the creep analysis. In this paper, comparison and analysis of the fatigue and the creep influence were performed to ensure the life expectancy of turbopump turbine.

  • PDF