• Title/Summary/Keyword: Extreme Process

Search Result 434, Processing Time 0.027 seconds

The Optimization Study on the Test Method of Remanufactured Power Steering Oil Pump by Using FMEA (FMEA를 활용한 재제조 파워스티어링 오일펌프 시험법에 대한 최적화 연구)

  • Seo, Youngkyo;Jung, Dohyun;Yu, Sangseok;Rha, Wanyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.90-98
    • /
    • 2016
  • Currently government certified test method for an automobile remanufactured products is insufficient. Thus many automotive parts in the remanufacturing market are lacking proper evaluation criteria and production of defective products are causing customer dissatisfaction. In this paper a power steering oil pump, which requires stringent manufacturing standards, is studied by the failure mode and effect analysis approach. The research suggested that the test criteria such as discharge flow characteristic test, tightness test, pulley run-out test, pressure switch operation test, low temperature test and rotation pressure durability test should be performed to evaluate the reliability of remanufactured power steering oil pumps. As a result of tests, the performance of remanufactured power steering oil pump satisfied the evaluation criteria of pressure switch operation test and low temperature test. However, the remanufactured power steering oil pump failed to satisfy the evaluation criteria on discharge performance test, tightness test and pulley run-out test. These performance evaluation tests proved the necessity of standard process for the remanufactured power steering oil pump.

Extreme wind speeds from multiple wind hazards excluding tropical cyclones

  • Lombardo, Franklin T.
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.467-480
    • /
    • 2014
  • The estimation of wind speed values used in codes and standards is an integral part of the wind load evaluation process. In a number of codes and standards, wind speeds outside of tropical cyclone prone regions are estimated using a single probability distribution developed from observed wind speed data, with no distinction made between the types of causal wind hazard (e.g., thunderstorm). Non-tropical cyclone wind hazards (i.e., thunderstorm, non-thunderstorm) have been shown to possess different probability distributions and estimation of non-tropical cyclone wind speeds based on a single probability distribution has been shown to underestimate wind speeds. Current treatment of non-tropical cyclone wind hazards in worldwide codes and standards is touched upon in this work. Meteorological data is available at a considerable number of United States (U.S.) stations that have information on wind speed as well as the type of causal wind hazard. In this paper, probability distributions are fit to distinct storm types (i.e., thunderstorm and non-thunderstorm) and the results of these distributions are compared to fitting a single probability distribution to all data regardless of storm type (i.e., co-mingled). Distributions fitted to data separated by storm type and co-mingled data will also be compared to a derived (i.e., "mixed") probability distribution considering multiple storm types independently. This paper will analyze two extreme value distributions (e.g., Gumbel, generalized Pareto). It is shown that mixed probability distribution, on average, is a more conservative measure for extreme wind speed estimation. Using a mixed distribution is especially conservative in situations where a given wind speed value for either storm type has a similar probability of occurrence, and/or when a less frequent storm type produces the highest overall wind speeds. U.S. areas prone to multiple non-tropical cyclone wind hazards are identified.

Estimation of extreme sea levels at tide-dominated coastal zone (조석이 지배적인 해역의 극치해면 산정)

  • Kang, Ju Whan;Kim, Yang-Seon;Cho, Hongyeon;Shim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.381-389
    • /
    • 2012
  • An EST-based method which is applicable for estimating extreme sea levels from short sea-level records in a tide dominated coastal zone was developed. Via the method, annual maximum tidal level is chosen from the simulated 1-yr tidal data which are constituted by the independent daily high water levels, short term and long term surge heights and typhoon-induced surge heights. The high water levels are generated considering not only spring/neap tides and annual tide but also 18.6-year lunar nodal cycle. Typhoon-induced surges are selected from the training set which is constructed by observed or simulated surge heights. This yearly simulation is repeated many hundred years to yield the extreme tidal levels, and the whole process is carried out many hundred times repeatedly to get robust statistics of the levels. In addition, validation of the method is also shown by comparing the result with other researches with the tidal data of Mokpo Harbor.

Application of the Large-scale Climate Ensemble Simulations to Analysis on Changes of Precipitation Trend Caused by Global Climate Change (기후변화에 따른 강수 특성 변화 분석을 위한 대규모 기후 앙상블 모의자료 적용)

  • Kim, Youngkyu;Son, Minwoo
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Recently, Japan's Meteorological Research Institute presented the d4PDF database (Database for Policy Decision-Making for Future Climate Change, d4PDF) through large-scale climate ensemble simulations to overcome uncertainty arising from variability when the general circulation model represents extreme-scale precipitation. In this study, the change of precipitation characteristics between the historical and future climate conditions in the Yongdam-dam basin was analyzed using the d4PDF data. The result shows that annual mean precipitation and seasonal mean precipitation increased by more than 10% in future climate conditions. This study also performed an analysis on the change of the return period rainfall. The annual maximum daily rainfall was extracted for each climatic condition, and the rainfall with each return period was estimated. In this process, we represent the extreme-scale rainfall corresponding to a very long return period without any statistical model and method as the d4PDF provides rainfall data during 3,000 years for historical climate conditions and during 5,400 years for future climate conditions. The rainfall with a 50-year return period under future climate conditions exceeded the rainfall with a 100-year return period under historical climate conditions. Consequently, in future climate conditions, the magnitude of rainfall increased at the same return period and, the return period decreased at the same magnitude of rainfall. In this study, by using the d4PDF data, it was possible to analyze the change in extreme magnitude of rainfall.

A Note on the Dependence Conditions for Stationary Normal Sequences

  • Choi, Hyemi
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.647-653
    • /
    • 2015
  • Extreme value theory concerns the distributional properties of the maximum of a random sample; subsequently, it has been significantly extended to stationary random sequences satisfying weak dependence restrictions. We focus on distributional mixing condition $D(u_n)$ and the Berman condition based on covariance among weak dependence restrictions. The former is assumed for general stationary sequences and the latter for stationary normal processes; however, both imply the same distributional limit of the maximum of the normal process. In this paper $D(u_n)$ condition is shown weaker than Berman's covariance condition. Examples are given where the Berman condition is satisfied but the distributional mixing is not.

On the member reliability of wind force-resisting steel frames designed by EN and ASCE rules of load combinations

  • Kudzys, Antanas;Kudzys, Algirdas
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.425-439
    • /
    • 2009
  • The expediency of revising universal rules for the combination of gravity and lateral actions of wind force-resisting steel structures recommended by the Standards EN 1990 and ASCE/SEI 7-05 is discussed. Extreme wind forces, gravity actions and their combinations for the limit state design of structures are considered. The effect of statistical uncertainties of extreme wind pressure and steel yield strength on the structural safety of beam-column joints of wind force-resisting multistory steel frames designed by the partial factor design (PFD) and the load and resistance factor design (LRFD) methods is demonstrated. The limit state criterion and the performance process of steel frame joints are presented and considered. Their long-term survival probability analysis is based on the unsophisticated method of transformed conditional probabilities. A numerical example illustrates some discrepancies in international design standards and the necessity to revise the rule of universal combinations of loads in wind and structural engineering.

Recent Trends and Application Status of the Metal Matrix Composites (MMCs) (최신 금속복합재료의 연구 개발 동향 및 응용 현황)

  • Kim, Hyo-Seop
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.164-173
    • /
    • 2020
  • Metal matrix composites (MMCs), which are a combination of two or more constituents with different physical or chemical properties, are today receiving great attention in various areas, as they have high specific strength, corrosion resistance, fatigue strength, and good tribological properties. This paper presents a research review on the combination of matrix and reinforced materials, fabrication processes, and application status of metal matrix composites. In this paper, we aim to discuss and review the importance of metal composite materials as advanced materials that can be used in various applications such as transportation, defense, sports, and extreme environments. In addition, the applicability and technology development trends in new process technology fields such as additive manufacturing of metal composites will be described.

A Study on Initial Blank Design and Modification for Rectangular Case Forming with Extreme Aspect Ratio (세장비가 큰 사각케이스 성형을 위한 초기 블랭크의 설계 및 개선에 관한 연구)

  • 구태완;박철성;강범수
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.307-318
    • /
    • 2004
  • Rectangular drawn case with extreme aspect ratio is widely used for electrical parts such as a lithium-ion battery container, semi-conductor case and so on. Additionally, from the recent trend towards miniaturization of the multi-functional mobile device, demands for rectangular case with the narrow width are increased. In this study, numerical and experimental approaches for the multi-stage deep drawing process have been carried out. Based on the research results of the width of 5.95mm model, finite element analysis for storage case of rectangular cup type was verified to the width of 4.95mm. Also, a series of manufacturing experiments for rectangular case is conducted and the deformed configuration of the rectangular drawn case are investigated by comparing with the results of the numerical analysis. And the modification of the initial blank is performed to minimize the trimmed material amount. By the application of the modified blank, the sound shape of the deformed parts is improved.

The Performance of a Diesel Engine Using Lubricant Containing Nano-metal Powder (나노금속분말 윤활제를 적용한 산업용 디젤엔진의 성능)

  • Park, Kweon-Ha;Choi, Jae-Sung;Kim, Dae-Hyun;Kim, Young-Nam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.670-676
    • /
    • 2008
  • A diesel engine requires a high Performance of lubrication because of the extreme conditions such as high temperature and pressure during combustion process in a cylinder. Many researches to improve the lubrication performance on the extreme condition have been executed. The lubricant oil suspended with nano-metal particles is the one of the measure. In this study, the nano-lubricant oil is applied on a commercial diesel engine, and the engine performance is tested. The results show the increase of maximum torque and the decrease of cylinder pressure, exhaust gas temperature, CO emission.

Fabrication of Ultra-fine Rhodium Wire Using Multi-pass Wire Drawing Process (다단 신선공정을 이용한 초극세 로듐 와이어 제조)

  • Lee, S.K.;Lee, S.Y.;Lee, I.K.;Hwang, S.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.275-280
    • /
    • 2019
  • The aim of this study is to fabricate an ultra-fine pure rhodium wire using multi-pass wire drawing process. To manufacture $30{\mu}m$ ultra-fine rhodium wire from the initial $50{\mu}m$ wire, a multi-pass wire drawing process was designed based on the uniform reduction ratio theory. The elastic-plastic finite element analysis was then conducted to validate the efficacy of the designed process. The drawing load, drawing stress, and the distribution of the effective strain were evaluated using the finite element analysis. Finally, the wire drawing experiment was performed to validate the designed wire drawing process. From the results of the experiment, the diameter of the final drawn wire was found to be $29.85{\mu}m$.