• Title/Summary/Keyword: Extreme Environments

Search Result 186, Processing Time 0.025 seconds

Evaluation of Wireless MEMS Sensor Measurements at an Outdoor Field With Temperature Variation in Extreme Environment (극한 환경에서 온도 변화에 따른 실외 현장에서의 무선 MEMS 센서 계측 유효성 평가)

  • Lee, Jong-Ho;Cheon, Dong-Jin;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2018
  • Recently, measuring instruments for SHM of structures has been developed. In general, the wireless transmission of sensor signals, compared to its wired counterpart, is preferable due to the absence of triboelectric noise and elimination of the requirement of a cumbersome cable. However, in extreme environments, the sensor may be less sensitive to temperature changes and to the distance between the sensor and data logger. This may compromise on the performance of the sensor and instrumentation. Therefore, in this paper, free vibration experiments were conducted using wireless MEMS sensors at an actual site. Measurement was assessed in time and frequency domain by changing the temperature variation at($-8^{\circ}C$, $-12^{\circ}C$ and $-16^{\circ}C$) and the communication distance (20m, 40m, 60m, 80m).

Structural integrity of a 2.5-MW spar-type floating offshore wind turbine under extreme environmental conditions

  • Hanjong Kim;Jaehoon Lee;Changwan Han;Seonghun Park
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.461-471
    • /
    • 2023
  • The main objective of this study was to establish design guidelines for three key design variables (spar thickness, spar diameter, and total draft) by examining their impact on the stress distribution and resonant frequency of a 2.5-MW spar-type floating offshore wind turbine substructure under extreme marine conditions, such as during Typhoon Bolaven. The current findings revealed that the substructure experienced maximum stress at wave frequencies of either 0.199 Hz or 0.294 Hz, consistent with previously reported experimental findings. These results indicated that the novel simulation method proposed in this study, which simultaneously combines hydrodynamic diffraction analysis, computational dynamics analysis, and structural analysis, was successfully validated. It also demonstrated that our proposed simulation method precisely quantified the stress distribution of the substructure. The novel findings, which reveal that the maximum stress of the substructure increases with an increase in total draft and a decrease in spar thickness and spar diameter, offer valuable insights for optimizing the design of spar-type floating offshore wind turbine substructures operating in various harsh marine environments.

Recent Trends and Application Status of the Metal Matrix Composites (MMCs) (최신 금속복합재료의 연구 개발 동향 및 응용 현황)

  • Kim, Hyo-Seop
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.164-173
    • /
    • 2020
  • Metal matrix composites (MMCs), which are a combination of two or more constituents with different physical or chemical properties, are today receiving great attention in various areas, as they have high specific strength, corrosion resistance, fatigue strength, and good tribological properties. This paper presents a research review on the combination of matrix and reinforced materials, fabrication processes, and application status of metal matrix composites. In this paper, we aim to discuss and review the importance of metal composite materials as advanced materials that can be used in various applications such as transportation, defense, sports, and extreme environments. In addition, the applicability and technology development trends in new process technology fields such as additive manufacturing of metal composites will be described.

Microbial Resources in Marine Environments

  • Lee Jung-Hyun;Bae Seung-Sup;Ryu Ji-Sun;Kim Sang-Jin
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.13-15
    • /
    • 2003
  • Studies on marine microbial diversity using direct analysis of rRNA sequences have revealed previously unrecognized microbes and novel phylogenetic lineages that represent major components of global microbial assemblages. This diversity in the marine biosphere offers opportunities for research and application in the field of biotechnology; global gas exchange, nutrient and element cycling, biomass md food production, marine bioproducts, and bioprocesses. Especially, deep-sea encompasses the extremes of virtually at] environmental parameters found on Earth and provides extreme microorganisms. In this study several extreme microorganisms were successfully isolated from the deep-sea sediment samples obtained by joining ocean cruises for last 2 years and some of them will be introduced.

  • PDF

Stress Analysis on a Structure of Solar Tracker Subjected to Wind Load (풍하중을 받는 태양광 추적 구조물의 응력해석)

  • Kim, Yong-Woo;Kim, Won-Bong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.747-754
    • /
    • 2012
  • A solar power generator is usually installed outdoors and it is exposed to extreme environments such as snow weight and wind loading. The solar tracker structure should be designed to have sufficient stiffness and strength against such loads. In this paper, simulations are performed by varying the parameters such as wind directions, wind speeds and the pose of the solar panel to evaluate the effects of extreme wind on solar tracker. As the effects of wind load, maximum displacement and maximum equivalent stress in the solar tracker are calculated. Finite element stress analysis is carried out by using the pressure distribution that is obtained by prior wind load analysis due to the flow around the solar tracker. The stress analysis of solar tracker to check and/or improve structural robustness provides some useful instructions for structural design or revision of solar tracker.

Development of Gondola-type Building Management Robot Platform and Mechanism for Moving/Tasking on Building Outer-wall (곤돌라형 외벽 유지관리 로봇의 이동/작업 메커니즘 및 플랫폼 개발)

  • Ham, Young-Bog;Park, Soung Jea
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.375-382
    • /
    • 2013
  • Down through the years, human needs and desires have required a robot system to work at hazardous environments instead. Current painting task is costly and laborious, and it exposes workers to significant health and safety risks. Automation system offers potential improvement in this area and is especially well suited to the outer-wall painting tasks in concrete structures. This paper introduces the result of gondola-type building management robot(G-BMR) platform and mechanism for moving/tasking on building outer-wall for the outer-wall painting. Its technical and economic feasibility are conducted, and it is concluded that developing G-BMR is physically and economically feasible in this research. And we discuss about the future of G-BMR and automation in construction field.

Retrofit Production and Field Evaluation for Use of Safeguards Equipment in Extreme Temperature Environments (극한 온도환경에서의 안전조치 검증장비 사용을 위한 리트로핏 제작 및 현장 평가)

  • Heekyun Baek;Jinwon Lee;Jung-Ki Shin
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • In a previous study, the suitability for use of inspection equipment was evaluated at temperatures outside the quality assurance range. The quality assurance operating temperature of the safeguards equipment is 0~+40℃, and previous studies have confirmed the performance of the safeguards equipment for temperatures ranging from -40~+70℃. The scintillator-based verification equipment showed a shift in the centroid channel and a change in the count rate in all temperature ranges, and the semiconductor-based safeguards equipment generated Leakage Current and equipment failure. In this study, a retrofit was performed applying a vacuum housing to the safeguards equipment (Inspector-2000-based inspection equipment), and performance evaluation was performed at a low temperature and snowy site, and it was confirmed that the same performance was observed as the measurement results at room temperature.

Technical Trends of Semiconductors for Harsh Environments (극한 환경용 반도체 기술 동향)

  • Chang, W.;Mun, J.K.;Lee, H.S.;Lim, J.W.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.12-23
    • /
    • 2018
  • In this paper, we review the technical trends of diamond and gallium oxide ($Ga_2O_3$) semiconductor technologies among ultra-wide bandgap semiconductor technologies for harsh environments. Diamond exhibits some of the most extreme physical properties such as a wide bandgap, high breakdown field, high electron mobility, and high thermal conductivity, yet its practical use in harsh environments has been limited owing to its scarcity, expense, and small-sized substrate. In addition, the difficulty of n-type doping through ion implantation into diamond is an obstacle to the normally-off operation of transistors. $Ga_2O_3$ also has material properties such as a wide bandgap, high breakdown field, and high working temperature superior to that of silicon, gallium arsenide, gallium nitride, silicon carbide, and so on. In addition, $Ga_2O_3$ bulk crystal growth has developed dramatically. Although the bulk growth is still relatively immature, a 2-inch substrate can already be purchased, whereas 4- and 6-inch substrates are currently under development. Owing to the rapid development of $Ga_2O_3$ bulk and epitaxy growth, device results have quickly followed. We look briefly into diamond and $Ga_2O_3$ semiconductor devices and epitaxy results that can be applied to harsh environments.

Extreme Offshore Wind Estimation using Typhoon Simulation (태풍 모의를 통한 해상 설계풍속 추정)

  • Ko, Dong Hui;Jeong, Shin Taek;Cho, Hongyeon;Kang, Keum Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.16-24
    • /
    • 2014
  • Long-term measured wind data are absolutely necessary to estimate extreme offshore wind speed. However, it is almost impossible to collect offshore wind measured data. Therefore, typhoon simulation is widely used to analyze offshore wind conditions. In this paper, 74 typhoons which affected the western sea of Korea during 1978-2012(35 years) were simulated using Holland(1980) model. The results showed that 49.02 m/s maximum wind speed affected by BOLAVEN(1215) at 100 m heights of HeMOSU-1 (Herald of Meteorological and Oceanographic Special Unit - 1) was the biggest wind speed for 35 years. Meanwhile, estimated wind speeds were compared with observed data for MUIFA, BOLAVEN, SANBA at HeMOSU-1. And to estimate extreme wind speed having return periods, extreme analysis was conducted by assuming 35 annual maximum wind speed at four site(HeMOSU-1, Gunsan, Mokpo and Jeju) in western sea of the Korean Peninsular to be Gumbel distribution. As a results, extreme wind speed having 50-year return period was 50 m/s, that of 100-year was 54.92 m/s at 100 m heights, respectively. The maximum wind speed by BOLAVEN could be considered as a extreme winds having 50-year return period.

Role of environment in the origin of early-type dwarf galaxies

  • Paudel, Sanjaya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2014
  • Role of environments is one of today's most widely discussed and debated topic in the field of extra-galactic astronomy. Extreme morphology-density relations found in low-mass galaxies are considered to be the result of an effective role played by environment in the evolution of these galaxies. I will present the results from our dedicated study of early-type dwarf galaxies (dEs) in different environments using imaging and spectroscopic data. We find that Virgo cluster dEs have a variety of structural and kinematic properties. A significant fraction of dEs possesses disk features, such as spiral arm and bar, while a central nucleus seems to be universal in these low mass galaxies. We also find that a majority of dEs are fast rotator and their rotation curves are much steeper than that of spiral galaxies of similar mass. Finally I will discuss how the different environmental mechanisms, i.e., gas-stripping or tidal interaction, can contribute to form heterogeneous dEs in Virgo cluster.

  • PDF