• Title/Summary/Keyword: Extreme Environments

Search Result 194, Processing Time 0.028 seconds

Vision-based Walking Guidance System Using Top-view Transform and Beam-ray Model (탑-뷰 변환과 빔-레이 모델을 이용한 영상기반 보행 안내 시스템)

  • Lin, Qing;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.93-102
    • /
    • 2011
  • This paper presents a walking guidance system for blind pedestrians in an outdoor environment using just one single camera. Unlike many existing travel-aid systems that rely on stereo-vision, the proposed system aims to get necessary information of the road environment by using just single camera fixed at the belly of the user. To achieve this goal, a top-view image of the road is used, on which obstacles are detected by first extracting local extreme points and then verified by the polar edge histogram. Meanwhile, user motion is estimated by using optical flow in an area close to the user. Based on these information extracted from image domain, an audio message generation scheme is proposed to deliver guidance instructions via synthetic voice to the blind user. Experiments with several sidewalk video-clips show that the proposed walking guidance system is able to provide useful guidance instructions under certain sidewalk environments.

Identification of SNPs tightly linked to the QTL for pod shattering in soybean[Glycine max (L.) Merr.]

  • Kim, Kyung-Ryun;Kim, Kyung Hye;Go, Hong Min;Lee, Ju Seok;Moon, Jung-Kyung;Ha, Bo-Keun;Jeong, Soon-Chun;Kim, Namshin;Kang, Sungtaeg
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.146-146
    • /
    • 2017
  • The pod shattering or dehiscence is essential for the propagation of pod-bearing plant species in the wild, but it causes significant yield losses during harvest of domesticated crop plants. Identifying novel molecular makers, which are linked to seed-shattering genes, is needed to employ the molecular marker-assisted selection for efficiently developing shattering-resistant soybean varieties. In this study, a genetic linkage map was constructed using 115 recombinant inbred lines (RILs) developed from crosses between the pod shattering susceptible variety, Keunol, and resistant variety, Sinpaldal. A 180 K Axiom(R) SoyaSNPs data and pod shattering data from two environments in 2001 and 2015 were used to identify quantitative trait loci (QTL) for pod shattering. A major QTL was identified between two flanking single nucleotide polymorphism (SNP) markers, AX-90320801 and AX-90306327 on chromosome 16 with 1.3 cM interval, 857 kb of physical range. In sequence, genotype distribution analysis was conducted using extreme phenotype RILs. This could narrow down the QTL down to 153 kb on the physical map and was designated as qPDH1-KS with 6 annotated gene models. All exons within qPDH1-KS were sequenced and the 6 polymorphic SNPs affecting the amino acid sequence were identified. To develop universally available molecular markers, 38 Korean soybean cultivars were investigated by the association study using the 6 identified SNPs. Only two SNPswere strongly associated with the pod shattering. These two identified SNPs will help to identify the pod shattering responsible gene and to develop pod shattering-resistant soybean plants using marker-assisted selection.

  • PDF

A Study on Degradation Characteristic of High Strength Fire Resistance Steel for Frame Structure by Acoustic Emission (음향방출법에 의한 고강도 구조용 내화강의 열화특성에 관한 연구)

  • Kim, H.S.;Kang, C.Y.;Nam, K.W.;Kim, B.A.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.309-317
    • /
    • 2000
  • Demand for new nondestructive evaluations is growing to detect tensile crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we investigated the strength of fire resistance steel for frame structure by tensile test after degradation treatment and analysed acoustic emission signals obtained from tensile test with time frequency analysis methods. In the T and TN specimens(under $600^{\circ}C$-10min ) consisting of ferrite and pearlite structure, most of acoustic emission events were produced near yield point, mainly due to the dislocation activities during the deformation. However, B specimen under $600^{\circ}C$-10min had a two peak which was attribute to the presence of martensite phase. The first peak is before yield point and the second after yield point. The sources of second acoustic emission peak were the debonding of martensite-martensite interface and the micro-cracking of brittle martensite phase. In $600^{\circ}C$-30min to $700^{\circ}C$-60min, many signals were observed before yield point and were decreased after yield point.

  • PDF

Study on the Ways to Improve Deep Underground Road Facilities and Operation Based on the Cases of Longitudinal Tunnel (장대터널의 사례에 기반한 대심도 지하도로 교통시설 및 운영 개선방안)

  • Choi, Jong Chul;Lim, Joon Beom;Hong, Ji yeon;Lee, Sung Yeol
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.122-131
    • /
    • 2015
  • Recently, starting with the deep underground road construction plan in Seobu Expressway, Korea, there area many studies on deep underground roads to be newly built. However, there is an extreme lack of safety standards, which does not consider traffic conditions and road driving characteristics. Therefore, this study reviewed safety elements to reflect in the deep underground road planning by analyzing driving stability of longitudinal tunnels with road environments, which resemble deep underground roads. For comprehensive analysis, the characteristics and causes of the accidents that have occurred in seven longitudinal tunnels with a length of 2km or over in Gangwon area, were collected. Specifically, geometric structures and facilities of each tunnel were investigated. Also, the present state of facility installation and the changes in driving speed of vehicles passing through each tunnel were observed to analyze the causes for the traffic accidents in each tunnel and accident reduction alternatives. It was revealed that the most frequent accidents in the tunnels resulted from the changes of traffic flow due to the abrupt speed reduction of forward vehicles, or the failure in speed control of following vehicles during the traffic congestion situation. Moreover, installing facilities such as plane and longitudinal curves, median strips and marginal strips seem to induce consistent driving speed. These results mean that for accident prevention, speed management must be preceded and there is a need to develop and introduce safety facilities actively to control the driving flow of forward and following vehicles.

Comparative Studies on Growth and Phosphatase Activity of Endolithic Cyanobacterial Isolates of Chroococcidiopsis from Hot and Cold Deserts

  • BANERJEE, MEENAKSHI;DEBKUMARI, SHARMA
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.125-130
    • /
    • 2005
  • The growth and phosphatase (phosphomonoesterase) activity of Chroococcidiopsis culture isolated from the cryptoendoliths of the Antarctic were compared with a similar isolate from the Arizona hot desert. Such cyanobacteria living inside rocks share several features with the immobilized cells produced in the laboratory. This study has relevance because the availability of phosphorus is a key factor influencing the growth of these cyanobacteria in nature, in such unique ecological niches as the hot and cold deserts. Phosphatase activity therefore is of particular importance for these organisms if they are to survive without any other source of phosphorus availability. Also, there is paucity of knowledge regarding this aspect of study in cyanobacterial cultures from these extreme environments. The salient feature of this study shows the importance of specific pH and temperatures for growth and phosphatase activity of both cultures, although there were marked differences between the two isolates. The pH and temperature optima for growth and phosphatase activity (PMEase) of Chroococcidiopsis 1 and 2 were 9.5, $240^{\circ}C$ and 8.5, $40^{\circ}C$ respectively. The $K_m and V_max$ values of cultured Chroococcidiopsis 1 showed lower affinity of PMEase for the substrate compared to the enzyme affinity of the same organism when found within the rocks; Chroococcidiopsis 2 and Arizona rocks containing the same alga however showed similar affinity of PMEase for the substrate. An interesting observation was the similarity in response of immobilized Chroococcidiopsis 1 culture and the same organism in the Antarctic rocks to low light and low temperature stimulation of PMEase. This thermal response seems to be related to the ability of the immobilized Antarctic isolate and the rocks to either cryoprotect the PMEase or undergo a change to save the enzyme from becoming nonfunctional under low temperatures. The free cells of Chroococcidiopsis 1 culture however did not show such responses.

Toward Optimal FPGA Implementation of Deep Convolutional Neural Networks for Handwritten Hangul Character Recognition

  • Park, Hanwool;Yoo, Yechan;Park, Yoonjin;Lee, Changdae;Lee, Hakkyung;Kim, Injung;Yi, Kang
    • Journal of Computing Science and Engineering
    • /
    • v.12 no.1
    • /
    • pp.24-35
    • /
    • 2018
  • Deep convolutional neural network (DCNN) is an advanced technology in image recognition. Because of extreme computing resource requirements, DCNN implementation with software alone cannot achieve real-time requirement. Therefore, the need to implement DCNN accelerator hardware is increasing. In this paper, we present a field programmable gate array (FPGA)-based hardware accelerator design of DCNN targeting handwritten Hangul character recognition application. Also, we present design optimization techniques in SDAccel environments for searching the optimal FPGA design space. The techniques we used include memory access optimization and computing unit parallelism, and data conversion. We achieved about 11.19 ms recognition time per character with Xilinx FPGA accelerator. Our design optimization was performed with Xilinx HLS and SDAccel environment targeting Kintex XCKU115 FPGA from Xilinx. Our design outperforms CPU in terms of energy efficiency (the number of samples per unit energy) by 5.88 times, and GPGPU in terms of energy efficiency by 5 times. We expect the research results will be an alternative to GPGPU solution for real-time applications, especially in data centers or server farms where energy consumption is a critical problem.

Morphological Observation on Tribological Characteristic of Thermal Spray Coated Steel-Bar (용사 코팅된 스틸바의 트라이볼로지적 특성의 형상학적 관찰)

  • Lee, Duk Gyu;Cho, Hee Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.559-566
    • /
    • 2014
  • Plasma coatings have been conducted to improve the mechanical properties of thermal resistance, wear resistance, corrosion resistance and thermal shock with respect to Great-Bar which is used as a carrier device for ironstone sintering under $700^{\circ}C$. The surface coatings on the upper side of the Great-Bar exposed on extreme environments of high temperature, severe wear, corrosion and thermal shock extended the life time due to the barrier coating layer. $Al_2O_3$, $Cr_2O_3$, WC coatings were applied to Great-Bar and their mechanical and chemical properties are analyzed by several experimental tests such as thermal resistance, wear resistance, corrosion resistance and thermal shock resistance. It shows excellent advantages with respect to wear, thermal shock and corrosion.

Screening of Radio-resistant Lactic Acid Bacteria

  • Hwang, E-Nam;Kang, Sang-Mo;Kim, Jae-Kyung;Lee, Ju-Woon;Park, Jong-Heum
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.335-340
    • /
    • 2013
  • This study screened for radio-resistant strains lactic acid bacteria (LAB) by evaluating their capability to survive exposure to ionizing radiation. Ten strains of LAB - Lactobacillus bulgaricus, Lactobacillus paracasei, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus delbruekii, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium breve, and Pediocuccos pentosaceus - were selected and subcultuted twice. The LAB was then further cultured for 3 d at $37^{\circ}C$ to reach 7-10 Log colony-forming units (CFU)/mL prior to irradiation and immediately exposed to gamma rays or electron beams with absorbed doses of 0, 1, 2, 3, 4, 5, 6, 8, and 10 kGy. Gamma irradiation gradually decreased the number of the tested viable LAB, and the effect was irradiation dose dependent. A similar effect was found in electron beam-irradiated LAB. Radiation sensitivity of LAB was calculated as $D_{10}$ values, which ranged from 0.26 kGy to 0.9 kGy and 0.5 kGy to 1.44 kGy with exposure to gamma and electron beam irradiation, respectively, in all tested LAB. L. acidophilus was the most resistant to gamma and electron beam irradiation, with $D_{10}$ values of 0.9 kGy and 1.44 kGy, respectively. These results suggest that L. acidophilus might be suitable for the preparation of probiotics as direct-fed microbes for astronauts in extreme space environments.

Verification of Structural Integrity for Cylindrical Subsonic Vehicle (원통형 아음속 비행체 구조 건전성 확인)

  • Choi, Youn Gyu;Noh, Kyung-Ho;Gil, Geun Suk;Jeon, Jong Geun;Baek, Joo Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.773-780
    • /
    • 2015
  • In this paper, the structural integrity for a cylindrical vehicle in subsonic environments is verified. In order to confirm static structural safety for the cylindrical vehicle in extreme maneuver condition, the structure analysis and full-scale static structure test are carried out. The commercial finite element codes, MSC. Patran/Nastran is used for numerical simulation. The full-scale static structure test equipment consists of the counterbalance system, loading system and data acquisition system. Besides, the dynamic characteristics for the cylindrical vehicle are reviewed by performing an impact hammer test.

Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil (동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성)

  • Seo, Young-Kyo;Choi, Heon-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.