• Title/Summary/Keyword: Extreme Aspect Ratio

Search Result 20, Processing Time 0.026 seconds

A Proton Beam Shaping using an Extreme Aspect Ratio Micro-hole (극대세장비 마이크로 홀을 이용한 양성자 빔 집적 응용)

  • Kim, Jin-Nam;Kwon, Won-Tae;Lee, Seong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.737-744
    • /
    • 2012
  • EDM is the manufacturing process that uses the thermal energy to machine electrically conductive part. Despite a lot of research has been conducted for decades, the best aspect ratio of the micro hole using micro-EDM has not been over 30, yet. In the present study, new fabrication scheme was introduced to increase the aspect ratio of micro hole dramatically. Micro holes with less than 10 aspect ratio were aligned and welded together to manufacture a micro hole with extreme aspect ratio. Alignment of the micro hole with over 380 aspect ratio was conducted by the home-made apparatus installed with microscope and laser beam. The micro hole with extreme aspect ratio was used to shape pencil beam from proton beam generated from MC-50 cyclotron. The pencil beam was utilized to machine test specimen whose result was compared with GEANT4 computer simulation. It was shown that the experimental and simulation result were closer as the aspect ratio of the micro hole was bigger.

Blank Design in Multi-Stage Rectangular Deep Drawing of Extreme Aspect Ratio (세장비가 큰 다단계 초정밀 사각형 디프드로잉을 위한 블랭크 설계)

  • 박철성;구태완;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • In this study, finite element analysis for multi-stage deep drawing process of rectangular configuration with extreme aspect ratio is carried out especially for the blank design. The analysis of rectangular deep drawing process with extreme aspect ratio is likewise very difficult with respect to the design process parameters including the intermediate die profile. In order to solve the difficulties, numerical approach using finite element method is performed in the present analysis and design. A series of experiments for multi-stage rectangular deep drawing process are conducted and the deformed configuration is investigated by comparing with the results of the finite element analysis. Additionally, to minimize amount of removal material after trimming process, finite element simulation is applied for the blank modification. The analysis incorporates brick elements for a rigid-plastic finite element method with an explicit time integration scheme using LS-DYNA3D.

  • PDF

Finite Element Analysis of Multi-Stage Deep Drawing Process for High Precision Rectangular Case with Extreme Aspect Ratio (세장비가 큰 사각컵 디프 드로잉의 유한요소 해석)

  • Ku T.W.;Ha B.K.;Song W.J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.274-284
    • /
    • 2002
  • Deep drawing process for rectangular drawn section is different with that for axisymmetric circular one. Therefore deep drawing process for rectangular drawn section requires several intermediate steps to generate the final configuration without any significant defect. In this study, finite element analysis for multi-stage deep drawing process for high precision rectangular cases is carried out especially for an extreme aspect ratio. The analysis is performed using rigid-plastic finite element method with an explicit time integration scheme of the commercial program, LS-DYNA3D. The sheet blank is modeled using eight-node continuum brick elements. The results of analysis show that the irregular contact condition between blank and die affects the occurrence of failure, and the difference of aspect ratio in the drawn section leads to non-uniform metal flow, which may cause failure. A series of experiments for multi-stage deep drawing process for the rectangular cases are conducted, and the deformation configuration and the thickness distribution of the drawn rectangular cases are investigated by comparing with the results of the numerical analysis. The numerical analysis with an explicit time integration scheme shows good agreement with the experimental observation.

  • PDF

A Study on Initial Blank Design and Modification for Rectangular Case Forming with Extreme Aspect Ratio (세장비가 큰 사각케이스 성형을 위한 초기 블랭크의 설계 및 개선에 관한 연구)

  • 구태완;박철성;강범수
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.307-318
    • /
    • 2004
  • Rectangular drawn case with extreme aspect ratio is widely used for electrical parts such as a lithium-ion battery container, semi-conductor case and so on. Additionally, from the recent trend towards miniaturization of the multi-functional mobile device, demands for rectangular case with the narrow width are increased. In this study, numerical and experimental approaches for the multi-stage deep drawing process have been carried out. Based on the research results of the width of 5.95mm model, finite element analysis for storage case of rectangular cup type was verified to the width of 4.95mm. Also, a series of manufacturing experiments for rectangular case is conducted and the deformed configuration of the rectangular drawn case are investigated by comparing with the results of the numerical analysis. And the modification of the initial blank is performed to minimize the trimmed material amount. By the application of the modified blank, the sound shape of the deformed parts is improved.

Wind flow around rectangular obstacles with aspect ratio

  • Lim, Hee-Chang
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.299-312
    • /
    • 2009
  • It has long been studied about the flow around bluff bodies, but the effect of aspect ratio on the sharp-edged bodies in thick turbulent boundary layers is still argued. The author investigates the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$ in mm) placed in a deep turbulent boundary layer. The study is aiming to identify the extant Reynolds number independence of the rectangular bodies and furthermore understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the shape of bodies is changed, responsible for producing extreme suction pressures around the bluff bodies. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of 24,000, 46,000 and 67,000, and large enough that the mean boundary layer flow is effectively Reynolds number independent. The experiment includes wind tunnel work with the velocity and surface pressure measurements. The results show that the generation of the deep turbulent boundary layer in the wind tunnel and the surface pressure around the bodies were all independent of Reynolds number and the longitudinal length, but highly dependent of the transverse width.

Manufacturing of Three-dimensional Micro Structure Using Proton Beam (양성자 빔을 이용한 3차원 마이크로 구조물 가공)

  • Lee, Seonggyu;Kwon, Won Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.301-307
    • /
    • 2015
  • The diameter of a proton beam emanating from the MC-50 cyclotron is about 2-3 mm with Gaussian distribution. This widely irradiated proton beam is not suitable for semiconductor etching, precise positioning, and micromachining, which require a small spot. In this study, a beam cutting method using a microhole is proposed as an economical alternative. We produced a microhole with aspect ratio, average diameter, and thickness of 428, $21{\mu}m$, and 9 mm, respectively, for cutting the proton beam. By using this high-aspect-ratio microhole, we conducted machinability tests on microstructures with sizes of tens of ${\mu}m$. Additionally, the results of simulation using GEANT4 and those of the actual experiment were compared and analyzed. The outcome confirmed the possibility of implementing a micro process technology for the fabrication of three-dimensional microstructures of 20 micron units using the MC-50 cyclotron with the microhole.

An Experimental Study on Blasting Collapse Behavior of Asymmetry Structure with High Aspect Ratio (고종횡비 비대칭 구조물의 발파붕괴 거동에 관한 연구)

  • Song, Young-Suk;Jung, Min-Su;Jung, Dong-Wol;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In blasting demolition, a method would be chosen among many depends on shape and system of a structure and its surround. To demolish using explosives a structure, which is asymmetric and with high aspect ratio, pre-weakening, explosive locations, detonating delay, and surround conditions are needed to be considered in front to design blasting demolition plan. In this study, to over turn asymmetric and high aspect ratio structure in safe, a simulation using a software named Extreme Loadings for Structures, ELS, had performed. In results, it is achieved optimized pre-weakening shapes and locations, which prevent kick back motion of the structure when it collapse, by analyzing moment distribution caused by pre-weakening. And of structural collapse and by minimizing asymmetric structure's torsional moment. Also, after the demolition, simulation results are also compared with actual collapse behavior. In results, it is confirmed the accuracy of collapse behaviour simulation results, and in blasting demolition, kick back motion can be controled by adjusting pre-weakening shape and location, and the torsional moment of an asymmetric structure also can be solved by optimizing detonation locations and its time intervals.

Improvement of Paraglider by Using Axiomatic Approach (공리적 접근법을 이용한 패러글라이더 성능 개선에 관한 연구)

  • 류상우;차성운;임웅섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.719-722
    • /
    • 2001
  • Paraglider has been used for a good air sports instrument by many people in the world though its short history. And manufacturers have improved it continuously. It has the great growth from the first model like parachute to the latest model that has the extreme speed, but we can improve it in more parts. In this paper, we will show the method which can improve its performance by using Axiomatic Approach.

  • PDF

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Probabilities of initiation of response modes of rigid bodies subjected to base excitations

  • Aydin, Kamil
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.505-523
    • /
    • 2006
  • An unrestrained plane rigid body resting on a horizontal surface which shakes horizontally and vertically may assume one of the five modes of response: rest, slide, slide-rock, rock, and free flight. The first four are nontrivial modes of motion. It is important to study which one of these responses is started from rest as in most studies it is often assumed that the initial mode is the particular mode of response. Criteria governing the initiation of modes are first briefly discussed. It is shown that the commencement of response modes depends on the aspect ratio of the body, coefficients of static and kinetic friction at the body-base interface, and the magnitude of maximum base accelerations. Considering the last two factors as random variables, the initiation of response modes is next studied from a probabilistic point of view. Type 1 extreme value and lognormal distributions are employed for maximum base excitations and coefficient of friction respectively. Analytical expressions for computing the probability values of each mode of response are derived. The effects of slenderness ratio, vertical acceleration, and statistical distributions of maximum acceleration and coefficient of friction are shown through numerical results and plots.