• Title/Summary/Keyword: Extractive Distillation

Search Result 13, Processing Time 0.016 seconds

Production of Fuel Bioethanol Using 2-Step Pressure Swing Absorption Process (2단계 PSA(Pressure Swing Absorption) 공정을 이용한 연료용 바이오에탄올 생산)

  • Jeon, Hyungjin;Go, Kyung-Mo;Jeong, Jun-Seong;Choi, Gi-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.111.1-111.1
    • /
    • 2011
  • Recently, comsumption of fossil fuel is causing many problems(oilflation, global warming, environmental pollution). For this reason Renewable energy is now becoming the center of interest as a solution to these problems. Bioethanol, especially, is able to substitute petroleum as fuel; making it a viable and promising renewable energy. In order to production of fuel bioethanol, Dehydration process is essential. Azeotropic distillation, extractive and pressure swing absorption(PSA) process are some of possible dehydration process, out of which, PSA process is attractive since it required less energy and lower setup cost. In this study, we produced fuel bioethanol using 2-step PSA(3 bed + 2 bed) process for more efficient and economical process. Through this study, we produced fuel bioethanol using 2-step PSA process and concentration of fuel bioethanol was 99.54wt%(feed ethanol: 92.4wt%). We expected that because of efficient use of absorbents(zeolite), 2 step PSA process contribute to economical operation.

  • PDF

Pervaporation of Butanol from their Aqueous Solution using a PDMS-Zeolite Composite Membrane (PDMS-Zeolite 복합막을 이용한 부탄올 투과증발)

  • Kong, Chang-In;Cho, Moon-Hee;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.816-822
    • /
    • 2011
  • Pervaporation is known to be a low energy consumption process since it needs only an electric power to maintain the permeate side in vacuum. Also, the pervaporation is an environmentally clean technology because it does not use the third material such as an entrainer for either an azeotropic distillation or an extractive distillation. In this study, Silicalite-1 particles are hydrothermally synthesized and polydimethylsiloxane(PDMS)-zeolite composite membranes are prepared with a mixture of synthesized Silicalite-1 particles and PDMS-polymer. They are used to separate n-butanol from its aqueous solution. Pervaporation characteristics such as a permeation flux and a separation factor are investigated as a function of the feed concentration and the weight % of Silicalite-1 particles in the membrane. A 1,000 $cm^3$ aqueous solution containing butanol of low mole fraction such as order of 0.001 was used as a feed to the membrane cell while the pressure of the permeation side was kept about 0.2~0.3 torr. When the butanol concentration in the feed solution was 0.015 mole fraction, the flux of n-butanol significantly increased from 14.5 g/ $m^2$/hr to 186.3 g/$m^2$/hr as the Silicalite-1 content increased from 0 wt% to 10 wt%, indicating that the Silicalite-1 molecular sieve improved the membrane permselectivity from 4.8 to 11.8 due to its unique crystalline microporous structure and its strong hydrophobicity. Consequently, the concentration of n-butanol in the permeate substantially increased from 0.07 to 0.15 mole fraction. This composite membrane could be potentially appliable for separation of n-butanol from insitu fermentation broth where n-butanol is produced at a fairly low concentration of 0.015 mole fraction.

Separation of Isomers and Close Boiling Mixtures by Crystalline Thiourea (결정성 Thiourea에 의한 유기 이성체 및 유사비점 혼합물의 분리)

  • Kim, Kwang-Joo;Lee, Choul-Ho;Lee, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 1996
  • The entrapping capacity of the single hydrocarbons and the entrapping equilibrium data for binary mixtures of the $C_6$ to $C_9$ hydrocarbons on the activated thiourea have been investigated. The entrapping capacity of single component varied irregularly with molecular size and was independent of temperature. In the liquid phase entrapping from binary system, the lower molecular weight hydrocarbon was entrappe preferentially. In the liquid phase entrapping from trimethylbenzene isomer and ethyltoluene isomer, selectivity was found to be related to the relative position of methyl groups in the molecules and hence the electronic configuration. Pseudocumene of a purity of 99.5wt% may be obtained from $C_9$ aromatic raffinate found in naphtha cracking center. Activated thiourea was more efficient than distillation, extractive crystallization and adductive crystallization in terms of separation factor.

  • PDF