• Title/Summary/Keyword: Extraction Feature Vector

Search Result 355, Processing Time 0.022 seconds

Keyword Spotting on Hangul Document Images Using Character Feature Models (문자 별 특징 모델을 이용한 한글 문서 영상에서 키워드 검색)

  • Park, Sang-Cheol;Kim, Soo-Hyung;Choi, Deok-Jai
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.521-526
    • /
    • 2005
  • In this Paper, we propose a keyword spotting system as an alternative to searching system for poor quality Korean document images and compare the Proposed system with an OCR-based document retrieval system. The system is composed of character segmentation, feature extraction for the query keyword, and word-to-word matching. In the character segmentation step, we propose an effective method to remove the connectivity between adjacent characters and a character segmentation method by making the variance of character widths minimum. In the query creation step, feature vector for the query is constructed by a combination of a character model by typeface. In the matching step, word-to-word matching is applied base on a character-to-character matching. We demonstrated that the proposed keyword spotting system is more efficient than the OCR-based one to search a keyword on the Korean document images, especially when the quality of documents is quite poor and point size is small.

A Hybrid Proposed Framework for Object Detection and Classification

  • Aamir, Muhammad;Pu, Yi-Fei;Rahman, Ziaur;Abro, Waheed Ahmed;Naeem, Hamad;Ullah, Farhan;Badr, Aymen Mudheher
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1176-1194
    • /
    • 2018
  • The object classification using the images' contents is a big challenge in computer vision. The superpixels' information can be used to detect and classify objects in an image based on locations. In this paper, we proposed a methodology to detect and classify the image's pixels' locations using enhanced bag of words (BOW). It calculates the initial positions of each segment of an image using superpixels and then ranks it according to the region score. Further, this information is used to extract local and global features using a hybrid approach of Scale Invariant Feature Transform (SIFT) and GIST, respectively. To enhance the classification accuracy, the feature fusion technique is applied to combine local and global features vectors through weight parameter. The support vector machine classifier is a supervised algorithm is used for classification in order to analyze the proposed methodology. The Pascal Visual Object Classes Challenge 2007 (VOC2007) dataset is used in the experiment to test the results. The proposed approach gave the results in high-quality class for independent objects' locations with a mean average best overlap (MABO) of 0.833 at 1,500 locations resulting in a better detection rate. The results are compared with previous approaches and it is proved that it gave the better classification results for the non-rigid classes.

A Study on the Efficient Feature Vector Extraction for Music Information Retrieval System (음악 정보검색 시스템을 위한 효율적인 특징 벡터 추출에 관한 연구)

  • 윤원중;이강규;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.532-539
    • /
    • 2004
  • In this Paper, we propose a content-based music information retrieval (MIR) system base on the query-by-example (QBE) method. The proposed system is implemented to retrieve queried music from a dataset where 60 music samples were collected for each of the four genres in Classical, Hiphop. Jazz. and Reck. resulting in 240 music files in database. From each query music signal, the system extracts 60 dimensional feature vectors including spectral centroid. rolloff. flux base on STFT and also the LPC. MFCC and Beat information. and retrieves queried music from a trained database set using Euclidean distance measure. In order to choose optimum features from the 60 dimension feature vectors, SFS method is applied to draw 10 dimension optimum features and these are used for the Proposed system. From the experimental result. we can verify the superior performance of the proposed system that provides success rate of 84% in Hit Rate and 0.63 in MRR which means near 10% improvements over the previous methods. Additional experiments regarding system Performance to random query Patterns (or portions) and query lengths have been investigated and a serious instability problem of system Performance is Pointed out.

Multi-Emotion Regression Model for Recognizing Inherent Emotions in Speech Data (음성 데이터의 내재된 감정인식을 위한 다중 감정 회귀 모델)

  • Moung Ho Yi;Myung Jin Lim;Ju Hyun Shin
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.81-88
    • /
    • 2023
  • Recently, communication through online is increasing due to the spread of non-face-to-face services due to COVID-19. In non-face-to-face situations, the other person's opinions and emotions are recognized through modalities such as text, speech, and images. Currently, research on multimodal emotion recognition that combines various modalities is actively underway. Among them, emotion recognition using speech data is attracting attention as a means of understanding emotions through sound and language information, but most of the time, emotions are recognized using a single speech feature value. However, because a variety of emotions exist in a complex manner in a conversation, a method for recognizing multiple emotions is needed. Therefore, in this paper, we propose a multi-emotion regression model that extracts feature vectors after preprocessing speech data to recognize complex, inherent emotions and takes into account the passage of time.

A Study on Robust Speech Emotion Feature Extraction Under the Mobile Communication Environment (이동통신 환경에서 강인한 음성 감성특징 추출에 대한 연구)

  • Cho Youn-Ho;Park Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.269-276
    • /
    • 2006
  • In this paper, we propose an emotion recognition system that can discriminate human emotional state into neutral or anger from the speech captured by a cellular-phone in real time. In general. the speech through the mobile network contains environment noise and network noise, thus it can causes serious System performance degradation due to the distortion in emotional features of the query speech. In order to minimize the effect of these noise and so improve the system performance, we adopt a simple MA (Moving Average) filter which has relatively simple structure and low computational complexity, to alleviate the distortion in the emotional feature vector. Then a SFS (Sequential Forward Selection) feature optimization method is implemented to further improve and stabilize the system performance. Two pattern recognition method such as k-NN and SVM is compared for emotional state classification. The experimental results indicate that the proposed method provides very stable and successful emotional classification performance such as 86.5%. so that it will be very useful in application areas such as customer call-center.

Performance Improvement of Speaker Recognition by MCE-based Score Combination of Multiple Feature Parameters (MCE기반의 다중 특징 파라미터 스코어의 결합을 통한 화자인식 성능 향상)

  • Kang, Ji Hoon;Kim, Bo Ram;Kim, Kyu Young;Lee, Sang Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.679-686
    • /
    • 2020
  • In this thesis, an enhanced method for the feature extraction of vocal source signals and score combination using an MCE-Based weight estimation of the score of multiple feature vectors are proposed for the performance improvement of speaker recognition systems. The proposed feature vector is composed of perceptual linear predictive cepstral coefficients, skewness, and kurtosis extracted with lowpass filtered glottal flow signals to eliminate the flat spectrum region, which is a meaningless information section. The proposed feature was used to improve the conventional speaker recognition system utilizing the mel-frequency cepstral coefficients and the perceptual linear predictive cepstral coefficients extracted with the speech signals and Gaussian mixture models. In addition, to increase the reliability of the estimated scores, instead of estimating the weight using the probability distribution of the convectional score, the scores evaluated by the conventional vocal tract, and the proposed feature are fused by the MCE-Based score combination method to find the optimal speaker. The experimental results showed that the proposed feature vectors contained valid information to recognize the speaker. In addition, when speaker recognition is performed by combining the MCE-based multiple feature parameter scores, the recognition system outperformed the conventional one, particularly in low Gaussian mixture cases.

Classification Method of Harmful Image Content Rates in Internet (인터넷에서의 유해 이미지 컨텐츠 등급 분류 기법)

  • Nam, Taek-Yong;Jeong, Chi-Yoon;Han, Chi-Moon
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.318-326
    • /
    • 2005
  • This paper presents the image feature extraction method and the image classification technique to select the harmful image flowed from the Internet by grade of image contents such as harmlessness, sex-appealing, harmfulness (nude), serious harmfulness (adult) by the characteristic of the image. In this paper, we suggest skin area detection technique to recognize whether an input image is harmful or not. We also propose the ROI detection algorithm that establishes region of interest to reduce some noise and extracts harmful degree effectively and defines the characteristics in the ROI area inside. And this paper suggests the multiple-SVM training method that creates the image classification model to select as 4 types of class defined above. This paper presents the multiple-SVM classification algorithm that categorizes harmful grade of input data with suggested classification model. We suggest the skin likelihood image made of the shape information of the skin area image and the color information of the skin ratio image specially. And we propose the image feature vector to use in the characteristic category at a course of traininB resizing the skin likelihood image. Finally, this paper presents the performance evaluation of experiment result, and proves the suitability of grading image using image feature classification algorithm.

A Study on Stroke Extraction for Handwritten Korean Character Recognition (필기체 한글 문자 인식을 위한 획 추출에 관한 연구)

  • Choi, Young-Kyoo;Rhee, Sang-Burm
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.375-382
    • /
    • 2002
  • Handwritten character recognition is classified into on-line handwritten character recognition and off-line handwritten character recognition. On-line handwritten character recognition has made a remarkable outcome compared to off-line hacdwritten character recognition. This method can acquire the dynamic written information such as the writing order and the position of a stroke by means of pen-based electronic input device such as a tablet board. On the contrary, Any dynamic information can not be acquired in off-line handwritten character recognition since there are extreme overlapping between consonants and vowels, and heavily noisy images between strokes, which change the recognition performance with the result of the preprocessing. This paper proposes a method that effectively extracts the stroke including dynamic information of characters for off-line Korean handwritten character recognition. First of all, this method makes improvement and binarization of input handwritten character image as preprocessing procedure using watershed algorithm. The next procedure is extraction of skeleton by using the transformed Lu and Wang's thinning: algorithm, and segment pixel array is extracted by abstracting the feature point of the characters. Then, the vectorization is executed with a maximum permission error method. In the case that a few strokes are bound in a segment, a segment pixel array is divided with two or more segment vectors. In order to reconstruct the extracted segment vector with a complete stroke, the directional component of the vector is mortified by using right-hand writing coordinate system. With combination of segment vectors which are adjacent and can be combined, the reconstruction of complete stroke is made out which is suitable for character recognition. As experimentation, it is verified that the proposed method is suitable for handwritten Korean character recognition.

HMM-based Intent Recognition System using 3D Image Reconstruction Data (3차원 영상복원 데이터를 이용한 HMM 기반 의도인식 시스템)

  • Ko, Kwang-Enu;Park, Seung-Min;Kim, Jun-Yeup;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.135-140
    • /
    • 2012
  • The mirror neuron system in the cerebrum, which are handled by visual information-based imitative learning. When we observe the observer's range of mirror neuron system, we can assume intention of performance through progress of neural activation as specific range, in include of partially hidden range. It is goal of our paper that imitative learning is applied to 3D vision-based intelligent system. We have experiment as stereo camera-based restoration about acquired 3D image our previous research Using Optical flow, unscented Kalman filter. At this point, 3D input image is sequential continuous image as including of partially hidden range. We used Hidden Markov Model to perform the intention recognition about performance as result of restoration-based hidden range. The dynamic inference function about sequential input data have compatible properties such as hand gesture recognition include of hidden range. In this paper, for proposed intention recognition, we already had a simulation about object outline and feature extraction in the previous research, we generated temporal continuous feature vector about feature extraction and when we apply to Hidden Markov Model, make a result of simulation about hand gesture classification according to intention pattern. We got the result of hand gesture classification as value of posterior probability, and proved the accuracy outstandingness through the result.

A Object-Based Image Retrieval Using Feature Analysis and Fractal Dimension (특징 분석과 프랙탈 차원을 이용한 객체 기반 영상검색)

  • 이정봉;박장춘
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.2
    • /
    • pp.173-186
    • /
    • 2004
  • This paper proposed the content-based retrieval system as a method for performing image retrieval through the effective feature extraction of the object of significant meaning based on the characteristics of man's visual system. To allow the object region of interest to be primarily detected, the region, being comparatively large size, greatly different from the background color and located in the middle of the image, was judged as the major object with a meaning. To get the original features of the image, the cumulative sum of tile declination difference vector the segment of the object contour had and the signature of the bipartite object were extracted and used in the form of being applied to the rotation of the object and the change of the size after partition of the total length of the object contour of the image into the normalized segment. Starting with this form feature, it was possible to make a retrieval robust to any change in translation, rotation and scaling by combining information on the texture sample, color and eccentricity and measuring the degree of similarity. It responded less sensitively to the phenomenon of distortion of the object feature due to the partial change or damage of the region. Also, the method of imposing a different weight of similarity on the image feature based on the relationship of complexity between measured objects using the fractal dimension by the Boxing-Counting Dimension minimized the wrong retrieval and showed more efficient retrieval rate.

  • PDF