• 제목/요약/키워드: Extracellular enzymes

검색결과 337건 처리시간 0.03초

Characterization of L-asparaginase-producing Trichoderma spp. Isolated from Marine Environments

  • Woon-Jong, Yu;Dawoon, Chung;Yong Min, Kwon;Seung Sub, Bae;Eun-Seo, Cho;Hye Suck, An;Grace, Choi
    • 한국해양생명과학회지
    • /
    • 제7권2호
    • /
    • pp.121-128
    • /
    • 2022
  • L-asparaginase (ASNase) is a therapeutic enzyme used to treat acute lymphoblastic leukemia. Currently, the most widely used ASNases are originated from bacteria. However, owing to the adverse effects of bacterial ASNases, new resources for ASNase production should be explored. Fungal enzymes are considered efficient and compatible resources of natural products for diverse applications. In particular, fungal species belonging to the genus Trichoderma are well-known producers of several commercial enzymes including cellulase, chitinase, and xylanase. However, enzyme production by marine-derived Trichoderma spp. remains to be elucidated. While screening for extracellular ASNase-producing fungi from marine environments, we found four strains showing extracellular ASNase activity. Based on the morphological and phylogenetic analyses using sequences of translation elongation factor 1-alpha (tef1α), the Trichoderma isolates were identified as T. afroharzianum, T. asperellem, T. citrinoviride, and Trichoderma sp. 1. All four strains showed different ASNase activities depending on the carbon sources. T. asperellem MABIK FU00000795 showed the highest ASNase value with lactose as a carbon source. Based on our findings, we propose that marine-derived Trichoderma spp. are potential candidates for novel ASNase production.

군산 인근 해역에서 종속영양 세균의 분포, 평균체적 및 세포외 효소활성력 (Distribution, Biovolume and Extracellular Enzyme Activities of Heterotrophic Bacteria in the Sea near Kunsan,Korea)

  • 이건형;김재원;김정희
    • The Korean Journal of Ecology
    • /
    • 제17권1호
    • /
    • pp.79-90
    • /
    • 1994
  • 1991년 11월부터 1992년 8월까지 총 8회에 걸쳐 금강하구에서 고군산군도까지 6개 정점을 대상으로 종속영양 세균의 분포와 평군체적 및 세포와 효소활성을 측정하였다. 해양성 종속영양 세균은 1.0X103~5X105 c.f.u./ml의 범주에서 분포하였으며, 간균이 45~72%를 차지하였다. 또한 구균의 평균체적은 (7.69$pm$0.18)X10-2~(8.18$pm$0.38)X10-2$mu$m3, 간균은 (6.09$pm$0.29)X10-2~(7.72$pm$0.41)X10-2$mu$m3의 범주에서 변화하였다. 세포외 효소활성도를 측정한 결과, glucosidase의 활성은 0~3.49$mu$M/l/hr, chitinase의 활성은 0~1.25$mu$M/l/hr, phosphatase는 0~11.95$mu$M/l/hr, amylase는 0~3.80$mu$M/l/hr의 범주에서 측정되어 세포외 효소활성은 여름철에 높은 값을 보였으며, 측정효소중 phosphatase의 활성이 가장 높았다. 종속영양 세균의 분포와 세포외 효소활성은 수온과 유입되는 유기물의 양과 밀접한 관계가 있었으며, 세균의 체적의 크기는 세포외 효소 활성과는 직접적인 관계가 없었다.

  • PDF

Biotransformation of Protopanaxadiol-Type Ginsenosides in Korean Ginseng Extract into Food-Available Compound K by an Extracellular Enzyme from Aspergillus niger

  • Jeong, Eun-Bi;Kim, Se-A;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권10호
    • /
    • pp.1559-1566
    • /
    • 2020
  • Compound K (C-K) is one of the most pharmaceutically effective ginsenosides, but it is absent in natural ginseng. However, C-K can be obtained through the hydrolysis of protopanaxadiol-type ginsenosides (PPDGs) in natural ginseng. The aim of this study was to obtain the high concentration of food-available C-K using PPDGs in Korean ginseng extract by an extracellular enzyme from Aspergillus niger KACC 46495. A. niger was cultivated in the culture medium containing the inducer carboxymethyl cellulose (CMC) for 6 days. The extracellular enzyme extracted from A. niger was prepared from the culture broth by filtration, ammonium sulfate, and dialysis. The extracellular enzyme was used for C-K production using PPDGs. The glycoside-hydrolyzing pathways for converting PPDGs into C-K by the extracellular enzyme were Rb1 → Rd → F2 → C-K, Rb2 → Rd or compound O → F2 or compound Y → C-K, and Rc → Rd or compound Mc1 → F2 or compound Mc → C-K. The extracellular enzyme from A. niger at 8.0 mg/ml, which was obtained by the induction of CMC during the cultivation, converted 6.0 mg/ml (5.6 mM) PPDGs in Korean ginseng extract into 2.8 mg/ml (4.5 mM) food-available C-K in 9 h, with a productivity of 313 mg/l/h and a molar conversion of 80%. To the best of our knowledge, the productivity and concentration of C-K of the extracellular enzyme are the highest among those by crude enzymes from wild-type microorganisms.

Enhancement of potency and stability of human extracellular superoxide dismutase

  • Kim, Sunghwan;Kim, Hae-Young;Kim, Jung-Ho;Choi, Jung-Hye;Ham, Won-Kook;Jeon, Yoon-Jae;Kang, Hara;Kim, Tae-Yoon
    • BMB Reports
    • /
    • 제48권2호
    • /
    • pp.91-96
    • /
    • 2015
  • Cells express several antioxidant enzymes to scavenge reactive oxygen species (ROS) responsible for oxidative damages and various human diseases. Therefore, antioxidant enzymes are considered biomedicine candidates. Among them, extracellular superoxide dismutase (SOD3) had showed prominent efficacy against asthma and inflammation. Despite its advantages as a biomedicine, the difficulty in obtaining large quantity of active recombinant human SOD3 (rhSOD3) has limited its clinical applications. We found that a significant fraction of over-expressed rhSOD3 was composed of the inactive apo-enzyme and its potency against inflammation depended on the rate of metal incorporation. Also, purified rhSOD3 was unstable and lost its activity very quickly. Here, we suggest an ideal preparative method to express, purify, and store highly active rhSOD3. The enzymatic activity of rhSOD3 was maximized by incorporating metal ions into rhSOD3 after purification. Also, albumin or polyethylene glycol prevented rapid inactivation or degradation of rhSOD3 during preparative procedures and long-term storage.

Functional Characteristics and Diversity of a Novel Lignocelluloses Degrading Composite Microbial System with High Xylanase Activity

  • Guo, Peng;Zhu, Wanbin;Wang, Hui;Lu, Yucai;Wang, Xiaofen;Zheng, Dan;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권2호
    • /
    • pp.254-264
    • /
    • 2010
  • To obtain an efficient natural lignocellulolytic complex enzyme, we screened an efficient lignocellulose-degrading composite microbial system (XDC-2) from composted agricultural and animal wastes amended soil following a long-term directed acclimation. Not only could the XDC-2 degrade natural lignocelluloses, but it could also secrete extracellular xylanase efficiently in liquid culture under static conditions at room temperature. The XDC-2 degraded rice straw by 60.3% after fermentation for 15 days. Hemicelluloses were decomposed effectively, whereas the extracellular xylanase activity was dominant with an activity of 8.357 U/ml on day 6 of the fermentation period. The extracellular crude enzyme noticeably hydrolyzed natural lignocelluloses. The optimum temperature and pH for the xylanase activity were $40^{\circ}C$ and 6.0. However, the xylanase was activated in a wide pH range of 3.0-10.0, and retained more than 80% of its activity at $25-35^{\circ}C$ and pH 5.0-8.0 after three days of incubation in liquid culture under static conditions. PCR-DGGE analysis of successive subcultures indicated that the XDC-2 was structurally stable over long-term restricted and directed cultivation. Analysis of the 168 rRNA gene clone library showed that the XDC-2 was mainly composed of mesophilic bacteria related to the genera Clostridium, Bacteroides, Alcaligenes, Pseudomonas, etc. Our results offer a new approach to exploring efficient lignocellulolytic enzymes by constructing a high-performance composite microbial system with synergistic complex enzymes.

Extraction and Application of Bulk Enzymes and Antimicrobial Substance from Spent Mushroom Substrates

  • Lim, Seon-Hwa;Kwak, A Min;Min, Kyong-Jin;Kim, Sang Su;Kang, Hee Wan
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.19-19
    • /
    • 2014
  • Pleurotus ostreatus, P. eryngii, and Flammulina velutipes are major edible mushrooms that account for over 89% of total mushroom production in Korea. Recently, Agrocybe cylindracea, Hypsizygus marmoreus, and Hericium erinaceu are increasingly being cultivated in mushroom farms. In Korea, the production of edible mushrooms was estimated to be 614,224 ton in 2013. Generally, about 5 kg of mushroom substrate is needed to produce 1 kg of mushroom, and consequently about 25 million tons of spent mushroom substrate (SMS) is produced each year in Korea. Because this massive amount of SMC is unsuitable for reuse in mushroom production, it is either used as garden fertilizer or deposited in landfills, which pollutes the environment. It is reasonably assumed that SMS includes different secondary metabolites and extracellular enzymes produced from mycelia on substrate. Three major groups of enzymes such as cellulases, xylanases, and lignin degrading enzymes are involved in breaking down mushroom substrates. Cellulase and xylanase have been used as the industrial enzymes involving the saccharification of biomass to produce biofuel. In addition, lignin degrading enzymes such as laccases have been used to decolorize the industrial synthetic dyes and remove environmental pollutions such as phenolic compounds. Basidiomycetes produce a large number of biologically active compounds that show antibacterial, antifungal, antiviral, cytotoxic or hallucinogenic activities. However, most previous researches have focused on therapeutics and less on the control of plant diseases. SMS can be considered as an easily available source of active compounds to protect plants from fungal and bacterial infections, helping alleviate the waste disposal problem in the mushroom industry and creating an environmentally friendly method to reduce plant pathogens. We describe extraction of lignocellulytic enzymes and antimicrobial substance from SMSs of different edible mushrooms and their potential applications.

  • PDF

된장으로부터 혈전용해능을 가진 Bacillus sp.의 분리 및 동정 (lsolation of Bacillus Strains Secreting Fibrinolytic Enzymes from Doen-Jang)

  • 김승호;최낙식;이우일;이종우;김동호
    • 미생물학회지
    • /
    • 제34권3호
    • /
    • pp.87-90
    • /
    • 1998
  • 우리 나라의 전통 대두발효식품인 된장으로부터 혈전용해능을 가진 미생물을 분리하였다. 그 중 5종류의 균주를 Bergey's manual of systematic bacteriology에 의거하여 동정한 결과 Bacillus sp. 균주로 밝혀졌다. 분리된 Bacillus 속 미생물을 효소 유도배지에서 배양한 결과 B. amyloliquefaciens는 2.46 plasmin unit/ml, B pantothenticus는 3.82 plasmin unit/ml 의 혈전용해능을 가지고 있었고, B. subtilis는 4.94 plasmin unti/ml의 높은 혈전용해효소 생산능을 보여주었다. 분리 균주에 의하여 생산된 세포외 단백질을 SDS-PAGE와 reverse fibrin zymogram 활성측정법에 의해 확인한 결과 각 균주별로 서로 다른 혈전용해효소가 생산되었음을 확인하였다.

  • PDF

Effect of Nutrients on the Production of Extracellular Enzymes for Decolorization of Reactive Blue 19 and Reactive Black 5

  • Lee Yu-Ri;Park Chul-Hwan;Lee Byung-Hwan;Han Eun-Jung;Kim Tak-Hyun;Lee Jin-Won;Kim Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.226-231
    • /
    • 2006
  • Several white-rot fungi are able to produce extracellular lignin-degrading enzymes such as manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase. In order to enhance the production of laccase and MnP using Trametes versicolor KCTC 16781 in suspension culture, the effects of major medium ingredients, such as carbon and nitrogen sources, on the production of the enzymes were investigated. The decolorization mechanism in terms of biodegradation and biosorption was also investigated. Among the carbon sources used, glucose showed the highest potential for the production of laccase and MnP. Ammonium tartrate was a good nitrogen source for the enzyme production. No significant difference in the laccase production was observed, when glucose concentration was varied between 5 g/l and 30 g/l. As the concentration of nitrogen source increased, a lower MnP activity was observed. The optimal C/N ratio was 25 for the production of laccase and MnP. When the concentrations of glucose and ammonium tartrate were simultaneously increased, the laccase and MnP activities increased dramatically. The maximum laccase and MnP activities were 33.7 U/ml at 72 h and 475 U/ml at 96 h, respectively, in the optimal condition. In this condition, over 90% decolorization efficiency was observed.

Studies on Microbial Extracellular $\beta$-Gala-ctosidase

  • Lee, Keun-Eok
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1979년도 춘계학술대회
    • /
    • pp.113.2-114
    • /
    • 1979
  • $\beta-Galactosidase$ is an enzyme which catalizes hydrolysis of lactose, a natural substrate, to glucose and galctose and transferring some monosac-charide units to active acceptors as sugar or alcohol. The occurence of $\beta-Galactosidase$ is known in various microorganisms, animals and higher plants and has been studied by many investigatigators. Especially, a great deal of articles for the enzyme of E. coli have been presented in genetic control mechanism and induction-repression effects of proteins, On the other hand, in the dairly products industry, it is important to hydrolyes lactosd which is the principal sugar of milk and milk products. During the last few years, the interest in enzymatic hydrolysis of milk lactose has teen increased, because of the lactose intolerence in large groups of the population. Microbial $\beta-Galactosidases$ are considered potentially most suitable for processing milk to hydrolyse lactose and, in recent years, the immobilized enzyme from yeast has been examined. Howev, most of the microbial $\beta-Gal$ actosidase are intracellular enzymes, except a few fungal $\beta-Gala-$ ctosidases, and extracellular $\beta-Galactosidase$ which may be favorable to industrial applieation is not so well investigated. On this studies, a mold producing a potent extracellular $\beta-Galactosidase$ was isolated from soil and identified as an imperfect fungus, Beauveria bassians. In this strain, both extracellular and intracellular $\beta-Galactosidases$ were produced simultaneously and a great increase of the extracellular production was acheved by improving the cultural conditions. The extracellular enzyme was purified more than 1, 000 times by procedures including Phosphocellulose and Sephadex G-200 chromatographies. Several characteristics of the enzymewas clarified with this preparation. The enzyme has a main subunit of molecular weight of 80, 000 which makes an active aggregate. And at neutral pH range, it has optimum pH for activity and stability. The Km value was determined to be 0.45$\times$10$^{-3}$ M for $o-Nitrophenyl-\beta-Galactoside.$ In any event, it is interesting to sttudy the $\beta-Galactosidase$ of B. bassiana for the mechanism of secretion and conformational structure of enzyme.

  • PDF

Simultaneous Degradation of Polycyclic Aromatic Hydrocarbons by Attractive Ligninolytic Enzymes from Phlebia brevispora KUC9045

  • Lee, Aslan Hwanhwi;Lee, Hanbyul;Kim, Jae-Jin
    • 환경생물
    • /
    • 제34권3호
    • /
    • pp.201-207
    • /
    • 2016
  • The hazards associated with the polycyclic aromatic hydrocarbons (PAHs) are known to be recalcitrant by their structure, but white rot fungi are capable of degrading recalcitrant organic compounds. Phlebia brevispora KUC9045 isolated from Korea was investigated its efficiency of degradation of four PAHs, such as phenanthrene, anthracne, fluoranthene, and pyrene. And the species secreted extracellular laccase and MnP (Manganese dependent peroxidase) during degradation. P. brevispora KUC9045 demonstrated effective degradation rates of phenanthrene (66.3%), anthracene (67.4%), fluoranthene (61.6%), and pyrene (63.3%), respectively. For enhancement of degradation rates of PAHs by the species, Remazol Brilliant Blue R (RBBR) was preferentially supplemented to induce ligninolytic enzymes. The biodegradation rates of the three PAHs including phenanthrene, fluoranthene, and pyrene were improved as higher concentration of Remazol Brilliant Blue R was supplemented. However, anthracene was degraded with the highest rate among four PAHs after two weeks of the incubation without RBBR addition. According to the previous study, RBBR can be clearly decolorized by P. brevispora KUC9045. Hence, the present study demonstrates simultaneous degradation of dye and PAHs by the white rot fungus. And it is considered that the ligninolytic enzymes are closely related with the degradation. In addition, it indicated that dye waste water might be used to induce ligninolytic enzymes for effective degradation of PAHs.