• Title/Summary/Keyword: Extracellular domain

Search Result 147, Processing Time 0.026 seconds

Chromophore formation and phosphorylation analysis of constitutively active rhodopsin mutants (Chromophore 형성과 rhodopsin kinase 활성을 이용한 항활성 로돕신 mutant의 분석)

  • Kim, Jong-Myoung
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.783-790
    • /
    • 2007
  • G protein coupled receptors (GPCRs) transmit various extracellular signals into the cells. Upon binding of the ligands, conformational changes in the extracellular and/or transmembrane (TM) domains of CPCRs were propagated into the cytoplasmic (CP) domain of the molecule leading to the activation of their cognate heterotrimeric C proteins and kinases. Constitutively active GPCR mutants causing the activation of C Protein signaling even in the absence of ligand binding are of interest for the study of activation mechanism of GPCRs. Two classes of constitutively active mutations, categorized by their effects on the salt bridge between Ell3 and K296, were found in the TM domain of rhodopsin. Opsin mutants containing combinations of the mutations were constructed to study the conformational changes required for the activation of rhodopsin. Rhodopsin chromophore regenerated with 11-cis-retinal showed a thermal stability inversely correlated with its constitutive activity. In contrast, rhodopsin mutants exhibited a binding affinity to an agonist, all-trans-retinal, in a constitutive activity-dependent manner. In order to test whether the conformational changes responsible for the activation of trans-ducin (Gt) are the same as the conformation required for the recognition of rhodopsin kinase, analysis of the mutants were carried out with phosphorylation by rhodopsin kinase. Rhodopsin mutants containing combinations of different classes of the mutations showed a strong synergistic effect on the phosphorylation of the mutants in the dark as similar to that of Gt activation. The results suggest that at least two or three kinds of segmental and independent conformational changes are required for the activation of rhodopsin and the conformational changes responsible for activating rhodopsin kinase and Gt are similar to each other.

Glycated Serum Albumin Induces Interleukin-6 Expression in Vascular Smooth Muscle Cells (혈관평활근세포에서 glycated albumin에 의한 interleukin-6 증가에 관여하는 인자에 대한 연구)

  • Baek, Seung-Il;Rhim, Byung-Yong;Kim, Koan-Hoi
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.36-43
    • /
    • 2011
  • Diabetes mellitus is associated with vascular complications. Diabetic patients exhibit high levels of glycated adducts in serum compared to non-diabetic individuals. The aim of this study was to investigate whether extracellular glycated albumin (GA) predisposes vascular smooth muscle cells (VSMCs) to pro-inflammatory phenotype. Exposure of rat aortic smooth muscle cells (AoSMCs) to GA not only enhanced interleukin-6 (IL-6) release but also activated promoter activity of the IL-6 gene. GA-induced IL-6 promoter activation was suppressed by dominant-negative forms of Toll-like receptor (TLR)-4 and myeloid differentiation factor 88 (MyD88), but not by dominant-negative-forms of TLR-2 and TIR-domain-containing adapter-inducing interferon-$\beta$ (TRIF). Extracellular signal-regulated kinase (ERK) inhibition and diphenyleneiodium (DPI) also attenuated IL-6 induction by GA. Mutation at the nuclear factor-${\kappa}B$ (NF-${\kappa}B$)-binding site in the IL-6 promoter region suppressed promoter activation in response to GA. The present study proposes that GA would contribute to inflammatory reaction in the stressed vasculature by inducing IL-6 in VSMCs, and that TLR-4, EKR, and NF-${\kappa}B$ play active roles in the process.

Osteonectin Interacts with Human Nebulin C-terminus in Skeletal Muscle

  • Park, Eun-Ran;Kim, Hyun-Suk;Choi, Jun-Hyuk;Lee, Yeong-Mi;Choi, Jae-Kyoung;Joo, Young-Mi;Ahn, Seung-Ju;Min, Byung-In;Kim, Chong-Rak
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.263-272
    • /
    • 2007
  • Nebulin is a giant actin binding protein (600-900 kDa) which is specific to skeletal muscle. This protein is known to regulate thin filaments length in sarcomere as a molecular template. The C-terminus of nebulin is located in the Z-disc of muscle sarcomere and is bound to other proteins such like myopalladin, titin, archvillin, and desmin. The N-terminus of nebulin binds to tropomodulin at the pointed ends of the thin filaments. In recent research, nebulin not only found in brain but also expressed in heart, stomach, and liver. So, the roles of nebulin in non-muscle tissue have been studied. However, lack of information or studies on nebulin binding proteins and nebulin function in brain are available so far. Therefore, the current study have investigated a novel binding partner of Nebulin C-terminus by using yeast two-hybrid screening with human brain cDNA library. Nebulin C-terminus, containing simple repeats, serine rich and SH3 domain, interacts with osteonectin C-terminal region. The specific interaction of nebulin and osteonectin were confirmed in vitro by using GST pull-down assay and reconfirmed in vivo by using transfected COS-7 cells with EGFP-tagged nebulin and DsRed-tagged osteonectin. Consequently, this study identified SH3 domain in nebulin C-terminus specifically binds to extracellular Ca-binding (EeC domain in osteonectin. Also, nebulin C-terminus fusion protein colocalized with osteonectin EC domain fusion protein in transfected COS-7 cells. The current study found the interaction between nebulin and osteonectin in human brain for the first time and suggested the nebulin in brain may be associated with osteonectin, as a regulator of cell cycle progression and mitosis.

  • PDF

Raw Starch-digesting Amylase is Comprised of two Distinct Domains of Catalytic and Substrate-Adsorbable Domain: Role of the C- Terminal Region in Raw-Starch-Binding

  • Kim, Cheorl-Ho
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.40-45
    • /
    • 2001
  • Raw starch-digesting amylase (BF-2A, M.W. 93, 000 Da) from Bacillus circulans F-2 was converted to two components during digestion with subtilisin. Two components were separated and designated as BF-2A' (63, 000 Da) and BF-2B (30, 000 Da), respectively. BF-2A' exhibited the same hydrolysis curve for soluble starch as the original amylase (BF-2A). Moreover, the catalytic activities of original and modified enzymes were indistinguishable in $K_{m}$, Vmax for, and in their specific activity for soluble starch hydrolysis. However, its adsorbability and digestibility on raw starch was greatly decreased. Furthermore, the enzymatic action pattern on soluble starch was greatly different from that of the BF-2A. A smaller peptide (BF-2B) showed adsorb ability onto raw starch. By these results, it is suggested that the larger peptide (BF-2A') has a region responsible for the expression of the enzyme activity to hydrolyze soluble substrate, and the smaller peptide (BF-2B) plays a role on raw starch adsorption. A similar phenomenon is observed during limited proteinase K, thermolysin, and endopeptidase Glu-C proteolysis of the enzyme. Fragments resulting from proteolysis were characterized by immunoblotting with anti-RSDA. The proteolytic patterns resulting from proteinase K and subtilisin were the same, producing 63- and 30-kDa fragments. Similar patterns were obtained with endopeptidase Glu-C or thermolysin. All proteolytic digests contained a common, major 63-kDa fragment. Inactivation of RSDA activity results from splitting off the C-terminal domain. Hence, it seems probable that the protease sensitive locus is in a hinge region susceptible to cleavage. Extracellular enzymes immunoreactive toward anti-RSDA were detected through whole bacterial cultivation. Proteins of sizes 93-, 75-, 63-, 55-, 38-, and 31-kDa were immunologically identical to RSDA. Of these, the 75-kDa and 63-kDa proteins correspond to the major products of proteolysis with Glu-C and thermolysin. These results postulated that enzyme heterogeneity of the raw starch-hydrolysis system might arise from the endogeneous proteolytic activity of the bacterium. Truncated forms of rsda, in which the gene sequence encoding the conserved domain had been deleted, directed the synthesis of a functional amylase that did not bind to raw starch. This indicates that the conserved region of RSDA constitutes a raw starch-binding domain, which is distinct from the active centre. The possible role of this substrate-binding region is discussed.d.

  • PDF

Myometrial relaxation of mice via expression of two pore domain acid sensitive K+ (TASK-2) channels

  • Kyeong, Kyu-Sang;Hong, Seung Hwa;Kim, Young Chul;Choi, Woong;Myung, Sun Chul;Lee, Moo Yeol;You, Ra Young;Kim, Chan Hyung;Kwon, So Yeon;Suzuki, Hikaru;Park, Yeon Jin;Jeong, Eun-Hwan;Kim, Hak Soon;Kim, Heon;Lim, Seung Woon;Xu, Wen-Xie;Lee, Sang Jin;Ji, Il Woon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.547-556
    • /
    • 2016
  • Myometrial relaxation of mouse via expression of two-pore domain acid sensitive (TASK) channels was studied. In our previous report, we suggested that two-pore domain acid-sensing $K^+$ channels (TASK-2) might be one of the candidates for the regulation of uterine circular smooth muscles in mice. In this study, we tried to show the mechanisms of relaxation via TASK-2 channels in marine myometrium. Isometric contraction measurements and patch clamp technique were used to verify TASK conductance in murine myometrium. Western blot and immunehistochemical study under confocal microscopy were used to investigate molecular identity of TASK channel. In this study, we showed that TEA and 4-AP insensitive non-inactivating outward $K^+$ current (NIOK) may be responsible for the quiescence of murine pregnant longitudinal myometrium. The characteristics of NIOK coincided with two-pore domain acid-sensing $K^+$ channels (TASK-2). NIOK in the presence of $K^+$ channel blockers was inhibited further by TASK inhibitors such as quinidine, bupivacaine, lidocaine, and extracellular acidosis. Furthermore, oxytocin and estrogen inhibited NIOK in pregnant myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed stronger inhibition of NIOK by quinidine and increased immunohistochemical expression of TASK-2. Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretch-activated channels in the longitudinal myometrium of mouse. Activation of TASK-2 channels seems to play an essential role for relaxing uterus during pregnancy and it might be one of the alternatives for preventing preterm delivery.

Detection of Matrix Metalloprotease-9 and Analysis of Protein Patterns in Bovine Vaginal Mucus during Estrus and Pregnancy

  • Kim, Sang-Hwan;Baek, Jun-Seok;Lee, Ho-Jun;Min, Kwan-Sik;Lee, Deuk-Hwan;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.93-100
    • /
    • 2012
  • To investigate the biochemical nature of changes in vaginal physiology during estrus and pregnancy, we examined the cytology and viscosity, and monitored the protein expression profile in vaginal mucus during estrus and pregnancy. The viscosity progressively decreased from estrus to pregnancy. Cell type analysis revealed that white blood cells progressively increased from estrus to pregnancy, while red blood cells progressively decreased during pregnancy. The cornification index (CI) was higher in estrus than in pregnancy. Protein mass spectrumetry identified the presence of ribosome-binding protein 1, GRIP 1 (Glutamate receptor-interacting protein 1)-associated protein 1, DUF729 (Domain of unknown function729) domain-containing protein 1, prolactin precursor, dihydrofolatereductase, and MMP (Matrix metalloprotease)-9 in vaginal mucus. MMP-2 and MMP-9 proteins in the vaginal mucus were active throughout estrus and gestation, as measured by a gelatinase assay, but most abundant in the vaginal mucus on day 0 of estrus. Results from ELISA of MMP-2 and MMP-9 were in accordance with the gelatinase assay. In light of the crucial role of metalloproteinases in extracellular matrix remodeling, the level of MMP-9 in vaginal mucus might be useful as an indicator of estrus and pregnancy to increase the efficiency of reproduction.

Differential Signaling via Tumor Necrosis Factor-Associated Factors (TRAFs) by CD27 and CD40 in Mouse B Cells

  • Woo, So-Youn;Park, Hae-Kyung;Bishop, Gail A.
    • IMMUNE NETWORK
    • /
    • v.4 no.3
    • /
    • pp.143-154
    • /
    • 2004
  • Background: CD27 is recently known as a memory B cell marker and is mainly expressed in activated T cells, some B cell population and NK cells. CD27 is a member of tumor necrosis factor receptor family. Like CD40 molecule, CD27 has (P/S/T/A) X(Q/E)E motif for interacting with TNF receptor-associated factors (TRAFs), and TRAF2 and TRAF5 bindings to CD27 in 293T cells were reported. Methods: To investigate the CD27 signaling effect in B cells, human CD40 extracellular domain containing mouse CD27 cytoplamic domain construct (hCD40-mCD27) was transfected into mouse B cell line CH12.LX and M12.4.1. Results: Through the stimulation of hCD40-mCD27 molecule via anti-human CD40 antibody or CD154 ligation, expression of CD11a, CD23, CD54, CD70 and CD80 were increased and secretion of IgM was induced, which were comparable to the effect of CD40 stimulation. TRAF2 and TRAF3 were recruited into lipid-enriched membrane raft and were bound to CD27 in M12.4.1 cells. CD27 stimulation, however, did not increase TRAF2 or TRAF3 degradation. Conclusion: In contrast to CD40 signaling pathway, TRAF2 and TRAF3 degradation was not observed after CD27 stimulation and it might contribute to prolonged B cell activation through CD27 signaling.

Signal transduction of C-terminal phosphorylation sites for equine follicle stimulating hormone receptor (eFSHR)

  • Seong, Hoon-Ki;Choi, Seung-Hee;Byambaragchaa, Munkhzaya;Min, Kwan-Sik
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.155-162
    • /
    • 2020
  • Equine follicle stimulating hormone receptor (eFSHR) has a large extracellular domain and an intracellular domain containing approximately 10 phosphorylation sites within the G protein-coupled receptor. This study was conducted to analyze the function of phosphorylation sties at the eFSHR C-terminal region. We constructed a mutant of eFSHR, in which the C-terminal cytoplasmic tail was truncated at residue 641 (eFSHR-t641). This removed 10 potential phosphorylation sites from the C-terminal region of the intracellular loop. The eFSHR-wild type (eFSHR-wt) and eFSHR-t641 cDNAs were subcloned into the pCMV-ARMS1-PK2 expression vector. These plasmids were transfected into PathHunter CHO-K1 Parental cells expressing β-arrestin 2 enzyme acceptor fusion protein and analyzed for agonist-induced cAMP response. The cAMP response in cells expressing eFSHR-t641 was lower than the response in cells expressing eFSHR-wt. EC50 values of eFSHR-wt and eFSHR-t641 were 1079 ng/mL and 1834 ng/mL, respectively. eFSHR-t641 was approximately 0.58-fold compared with that of eFSHR-wt. The maximal response in eFSHR-wt and eFSHR-t641 was 24.7 nM and 16.7 nM, respectively. The Rmax value of phosphorylation sites in eFSHR-t641 was also decreased to approximately 68.4% of that in eFSHR-wt. The collective data implicate that the phosphorylation sites in the eFSHR C-terminal region have a pivotal role in signal transduction in PathHunter CHO-K1 cells, and indicate that β-arrestin is involved in coupling the activated receptors to the internalization system.

Zebrafish as a Tool for Function Genomics (제브라피쉬를 이용한 새로운 유전자의 발굴 및 기능분석)

  • Kim Hyun Taek;Kim Cheol Hee
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.69-80
    • /
    • 2003
  • The zebrafish(Danio rerio) is a pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. We show examples of positional cloning in two developmental mutants in zebrafish. headless: The severe head defects in headless(hdl) mutants are due to a mutation in T-cell factor-3(Tcf3). Loss of Tcf3 function in the hdl mutant reveals that Hdl represses Wnt target genes. The results provide genetic evidence that a component of the Wnt signaling pathway is essential in vertebrate head formation and patterning. mind bomb: Reduced lateral inhibition in mind bomb(mib) mutants permits too many neural precursors to differentiate as neurons. Positional cloning of mib revealed that it is a gene in the Notch pathway that encodes a ubiquitin E3 ligase. Mib interacts with the intracellular domain of Delta to promote its internalization. The results suggest a model for Notch activation where the Delta-Notch interaction is followed by endocytosis of Delta and transendocytosis of the Notch extracellular domain by the signaling cell.

  • PDF

Targeting SHCBP1 Inhibits Cell Proliferation in Human Hepatocellular Carcinoma Cells

  • Tao, Han-Chuan;Wang, Hai-Xiao;Dai, Min;Gu, Cheng-Yu;Wang, Qun;Han, Ze-Guang;Cai, Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5645-5650
    • /
    • 2013
  • Src homology 2 domain containing (SHC) is a proto-oncogene which mediates cell proliferation and carcinogenesis in human carcinomas. Here, the SHC SH2-domain binding protein 1 (SHCBP1) was first established to be up-regulated in human hepatocellular carcinoma (HCC) tissues by array-base comparative genome hybridization (aCGH). Meanwhile, we examine and verify it by quantitative real-time PCR and western blot. Our current data show that SHCBP1 was up-regulated in HCC tissues. Overexpression of SHCBP1 could significantly promote HCC cell proliferation, survival and colony formation in HCC cell lines. Furthermore, knockdown of SHCBP1 induced cell cycle delay and suppressed cell proliferation. Furthermore, SHCBP1 could regulate the expression of activate extracellular signal-regulated kinase 1/2 (ERK1/2) and cyclin D1. Together, our findings indicate that SHCBP1 may contribute to human hepatocellular carcinoma by promoting cell proliferation and may serve as a molecular target of cancer therapy.