• 제목/요약/키워드: Extracellular

검색결과 3,576건 처리시간 0.035초

Fungal Metabolism of Environmentally Persistent Compounds: Substrate Recognition and Metabolic Response

  • Wariishi, Hiroyuki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권6호
    • /
    • pp.422-430
    • /
    • 2000
  • Mechanism of lignin biodegradation caused by basidiomycetes and the history of lignin biodegradation studies were briefly reviewed. The important roles of fungal extracellular ligninolytic enzymes such as lignin and manganese peroxidases (LiP and MnP) were also summarized. These enzymes were unique in their catalytic mechanisms and substrate specificities. Either LiP or MnP system is capable of oxidizing a variety of aromatic substrates via a one-electron oxidation. Extracellular fungal system for aromatic degradation is non-specific, which recently attracts many people working a bioremediation field. On the other hand, an intracellular degradation system for aromatic compounds is rather specific in the fungal cell. Structurally similar compounds were prepared and metabolized, indicating that an intracellular degradation strategy consisted of the cellular systems for substrate recognition and metabolic response. It was assumed that lignin-degrading fungi might be needed to develop multiple metabolic pathways for a variety of aromatic compounds caused by the action of non-specific ligninolytic enzymes on lignin. Our recent results on chemical stress responsible factors analyzed using mRNA differential display techniques were also mentioned.

  • PDF

Heterologous Gene Expression and Secretion of the Anticoagulant Hirudin in a Methylotrophic Yeast Hansenula polymorpha

  • Sohn, Jung-Hoon;Michael-Yu-Beburov;Choi, Eui-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권2호
    • /
    • pp.65-72
    • /
    • 1993
  • A heterologous gene expression and secretion system using a methylotrophic yeast, Hansenula polymorpha was developed for the production of anticoagulant hirudin. Hirudin gene was expressed under the control of a strong and inducible methanol oxidase (MOX or AOX) promoter. The mating factor a pre-pro leader sequence of Saccharomyces cerevisiae was employed for hirudin to be secreted into the extracellular medium. Hirudin expression cassette was introduced into three strains of H. polymorpha, A16, HPBl and DLl which have different genetic backgrounds. This expression cassette was stably integrated into the host chromosomal DNA. Biologically active and mature hirudin was efficiently expressed and secreted into the extracellular medium. About 19 mg/L of hirudin was found in the culture supernatant in the case of a two-copy integrant of the strain HPBl under suboptimal culture conditions.

  • PDF

Fluorescent and bioluminescent nanoprobes for in vitro and in vivo detection of matrix metalloproteinase activity

  • Lee, Hawon;Kim, Young-Pil
    • BMB Reports
    • /
    • 제48권6호
    • /
    • pp.313-318
    • /
    • 2015
  • Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade the extracellular matrix (ECM) and regulate the extracellular microenvironment. Despite the significant role that MMP activity plays in cell-cell and cell-ECM interactions, migration, and differentiation, analyses of MMPs in vitro and in vivo have relied upon their abundance using conventional immunoassays, rather than their enzymatic activities. To resolve this issue, diverse nanoprobes have emerged and proven useful as effective activity-based detection tools. Here, we review the recent advances in luminescent nanoprobes and their applications in in vitro diagnosis and in vivo imaging of MMP activity. Nanoprobes with the purpose of sensing MMP activity consist of recognition and detection units, which include MMP-specific substrates and luminescent (fluorescent or bioluminescent) nanoparticles, respectively. With further research into improvement of the optical performance, it is anticipated that luminescent nanoprobes will have great potential for the study of the functional roles of proteases in cancer biology and nanomedicine. [BMB Reports 2015; 48(6): 313-318]

Autophagy in neutrophils

  • Shrestha, Sanjeeb;Lee, Jae Man;Hong, Chang-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권1호
    • /
    • pp.1-10
    • /
    • 2020
  • Autophagy is a highly conserved intracellular degradation and energy-recycling mechanism that contributes to the maintenance of cellular homeostasis. Extensive researches over the past decades have defined the role of autophagy innate immune cells. In this review, we describe the current state of knowledge regarding the role of autophagy in neutrophil biology and a picture of molecular mechanism underlying autophagy in neutrophils. Neutrophils are professional phagocytes that comprise the first line of defense against pathogen. Autophagy machineries are highly conserved in neutrophils. Autophagy is not only involved in generalized function of neutrophils such as differentiation in bone marrow but also plays crucial role effector functions of neutrophils such as granule formation, degranulation, neutrophil extracellular traps release, cytokine production, bactericidal activity and controlling inflammation. This review outlines the current understanding of autophagy in neutrophils and provides insight towards identification of novel therapeutics targeting autophagy in neutrophils.

Yarrowia lipolytica 504D의 Extracellular Alkaline Proteinase 생산성 (Production of the Extracellular Alkaline Proteinase by Yarrowia Lipolytica 504D)

  • 유춘발;김창화;김태곤
    • 생명과학회지
    • /
    • 제8권3호
    • /
    • pp.333-338
    • /
    • 1998
  • Productivity of alkaline proteinase from Yarrowia lipolytica 504D was investigated. For the production fo the enzyme, hemoglobin was the best nitogen source, however, casein and skim milk were also good. All carbon sources inhibited strongly the producitivity of the enzyme. Yeast extract increased the productivity of the enzyme to 220%, but almost mineral salts except monovalant ions decreased it. Based on these results, optimal medium was composed of 1.2% casein, 0.2% glucose, 0.16% yeast extract, and 0.1% ammonium sulfate. the best condition for the production of the enzyme was observed at pH 9 and $20^{\circ}C$ for 42 hours.

  • PDF