DOI QR코드

DOI QR Code

Autophagy in neutrophils

  • Shrestha, Sanjeeb (Department of Physiology, School of Medicine, Kyungpook National University) ;
  • Lee, Jae Man (Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University) ;
  • Hong, Chang-Won (Department of Physiology, School of Medicine, Kyungpook National University)
  • Received : 2019.10.28
  • Accepted : 2019.11.27
  • Published : 2020.01.01

Abstract

Autophagy is a highly conserved intracellular degradation and energy-recycling mechanism that contributes to the maintenance of cellular homeostasis. Extensive researches over the past decades have defined the role of autophagy innate immune cells. In this review, we describe the current state of knowledge regarding the role of autophagy in neutrophil biology and a picture of molecular mechanism underlying autophagy in neutrophils. Neutrophils are professional phagocytes that comprise the first line of defense against pathogen. Autophagy machineries are highly conserved in neutrophils. Autophagy is not only involved in generalized function of neutrophils such as differentiation in bone marrow but also plays crucial role effector functions of neutrophils such as granule formation, degranulation, neutrophil extracellular traps release, cytokine production, bactericidal activity and controlling inflammation. This review outlines the current understanding of autophagy in neutrophils and provides insight towards identification of novel therapeutics targeting autophagy in neutrophils.

Keywords

References

  1. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6:173-182. https://doi.org/10.1038/nri1785
  2. Furze RC, Rankin SM. Neutrophil mobilization and clearance in the bone marrow. Immunology. 2008;125:281-288. https://doi.org/10.1111/j.1365-2567.2008.02950.x
  3. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood . 1998;92:3007-3017. https://doi.org/10.1182/blood.V92.9.3007
  4. Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197-223. https://doi.org/10.1146/annurev.immunol.23.021704.115653
  5. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532-1535. https://doi.org/10.1126/science.1092385
  6. Naegele M, Tillack K, Reinhardt S, Schippling S, Martin R, Sospedra M. Neutrophils in multiple sclerosis are characterized by a primed phenotype. J Neuroimmunol. 2012;242:60-71. https://doi.org/10.1016/j.jneuroim.2011.11.009
  7. Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33:657-670. https://doi.org/10.1016/j.immuni.2010.11.011
  8. Ryter SW, Cloonan SM, Choi AM. Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells. 2013;36:7-16. https://doi.org/10.1007/s10059-013-0140-8
  9. Nezis IP, Vaccaro MI, Devenish RJ, Juhasz G. Autophagy in development, cell differentiation, and homeodynamics: from molecular mechanisms to diseases and pathophysiology. Biomed Res Int. 2014;2014:349623. https://doi.org/10.1155/2014/349623
  10. Mitroulis I, Kourtzelis I, Kambas K, Rafail S, Chrysanthopoulou A, Speletas M, Ritis K. Regulation of the autophagic machinery in human neutrophils. Eur J Immunol. 2010;40:1461-1472. https://doi.org/10.1002/eji.200940025
  11. Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol. 2009;335:1-32. https://doi.org/10.1007/978-3-642-00302-8_1
  12. Das G, Shravage BV, Baehrecke EH. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb Perspect Biol. 2012;4:a008813. https://doi.org/10.1101/cshperspect.a008813
  13. Cuervo AM. Autophagy: many paths to the same end. Mol Cell Biochem. 2004;263:55-72. https://doi.org/10.1023/B:MCBI.0000041848.57020.57
  14. Wang CW, Klionsky DJ. The molecular mechanism of autophagy. Mol Med . 2003;9:65-76. https://doi.org/10.1007/BF03402040
  15. Mizushima N. Autophagy: process and function. Genes Dev. 2007; 21:2861-2873. https://doi.org/10.1101/gad.1599207
  16. Itakura A, McCarty OJ. Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. Am J Physiol Cell Physiol. 2013;30:C348-C354. https://doi.org/10.1152/ajpcell.00108.2013
  17. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20:460-473. https://doi.org/10.1089/ars.2013.5371
  18. Backer JM. The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. Biochem J. 2016;473: 2251-2271. https://doi.org/10.1042/BCJ20160170
  19. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature. 1998;395:395-398. https://doi.org/10.1038/26506
  20. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3-12. https://doi.org/10.1002/path.2697
  21. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408:488-492. https://doi.org/10.1038/35044114
  22. Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and noncanonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol . 2011;13:7-12. https://doi.org/10.1038/nrm3249
  23. Chargui A, Cesaro A, Mimouna S, Fareh M, Brest P, Naquet P, Darfeuille-Michaud A, Hebuterne X, Mograbi B, Vouret-Craviari V, Hofman P. Subversion of autophagy in adherent invasive Escherichia coli-infected neutrophils induces inflammation and cell death. PLoS One. 2012;7:e51727. https://doi.org/10.1371/journal.pone.0051727
  24. Goldmann O, Medina E. The expanding world of extracellular traps: not only neutrophils but much more. Front Immunol. 2013; 3:420. https://doi.org/10.3389/fimmu.2012.00420
  25. Mihalache CC, Yousefi S, Conus S, Villiger PM, Schneider EM, Simon HU. Inflammation-associated autophagy-related programmed necrotic death of human neutrophils characterized by organelle fusion events. J Immunol. 2011;186:6532-6542. https://doi.org/10.4049/jimmunol.1004055
  26. Huang J, Canadien V, Lam GY, Steinberg BE, Dinauer MC, Magalhaes MA, Glogauer M, Grinstein S, Brumell JH. Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci U S A. 2009;106:6226-6231. https://doi.org/10.1073/pnas.0811045106
  27. Lv XX, Liu SS, Li K, Cui B, Liu C, Hu ZW. Cigarette smoke promotes COPD by activating platelet-activating factor receptor and inducing neutrophil autophagic death in mice. Oncotarget. 2017;8:74720-74735. https://doi.org/10.18632/oncotarget.20353
  28. Sharma A, Simonson TJ, Jondle CN, Mishra BB, Sharma J. Minclemediated neutrophil extracellular trap formation by regulation of autophagy. J Infect Dis. 2017;215:1040-1048. https://doi.org/10.1093/infdis/jix072
  29. Zhao M, Klionsky DJ. AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab. 2011;13:119-120. https://doi.org/10.1016/j.cmet.2011.01.009
  30. Xu F, Zhang C, Zou Z, Fan EKY, Chen L, Li Y, Billiar TR, Wilson MA, Shi X, Fan J. Aging-related Atg5 defect impairs neutrophil extracellular traps formation. Immunology. 2017;151:417-432. https://doi.org/10.1111/imm.12740
  31. Bhattacharya A, Wei Q, Shin JN, Abdel Fattah E, Bonilla DL, Xiang Q, Eissa NT. Autophagy Is required for neutrophil-mediated inflammation. Cell Rep. 2015;12:1731-1739. https://doi.org/10.1016/j.celrep.2015.08.019
  32. Park SY, Shrestha S, Youn YJ, Kim JK, Kim SY, Kim HJ, Park SH, Ahn WG, Kim S, Lee MG, Jung KS, Park YB, Mo EK, Ko Y, Lee SY, Koh Y, Park MJ, Song DK, Hong CW. Autophagy primes neutrophils for neutrophil extracellular trap formation during sepsis. Am J Respir Crit Care Med. 2017;196:577-589. https://doi.org/10.1164/rccm.201603-0596OC
  33. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, Adhihetty PJ, Adler SG, Agam G, Agarwal R, Aghi MK, Agnello M, Agostinis P, Aguilar PV, Aguirre-Ghiso J, Airoldi EM, et al . Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1-222. https://doi.org/10.1080/15548627.2015.1100356
  34. Rozman S, Yousefi S, Oberson K, Kaufmann T, Benarafa C, Simon HU. The generation of neutrophils in the bone marrow is controlled by autophagy. Cell Death Differ. 2015;22:445-456. https://doi.org/10.1038/cdd.2014.169
  35. Kimmey JM, Huynh JP, Weiss LA, Park S, Kambal A, Debnath J, Virgin HW, Stallings CL. Unique role for ATG5 in neutrophilmediated immunopathology during M. tuberculosis infection. Nature. 2015;528:565-569. https://doi.org/10.1038/nature16451
  36. Theilgaard-Monch K, Jacobsen LC, Borup R, Rasmussen T, Bjerregaard MD, Nielsen FC, Cowland JB, Borregaard N. The transcriptional program of terminal granulocytic differentiation. Blood . 2005;105:1785-1796. https://doi.org/10.1182/blood-2004-08-3346
  37. Akashi K, He X, Chen J, Iwasaki H, Niu C, Steenhard B, Zhang J, Haug J, Li L. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood. 2003101:383-389. https://doi.org/10.1182/blood-2002-06-1780
  38. Huang Y, Tan P, Wang X, Yi Y, Hu Y, Wang D, Wang F. Transcriptomic insights into temporal expression pattern of autophagy genes during monocytic and granulocytic differentiation. Autophagy. 2018;14:558-559. https://doi.org/10.1080/15548627.2018.1425060
  39. Koschade SE, Brandts CH. Selective autophagy in normal and malignant hematopoiesis. J Mol Biol. 2019. doi: 10.1016/j.jmb. 2019.06.025. [Epub ahead of print]
  40. Orsini M, Chateauvieux S, Rhim J, Gaigneaux A, Cheillan D, Christov C, Dicato M, Morceau F, Diederich M. Sphingolipidmediated inflammatory signaling leading to autophagy inhibition converts erythropoiesis to myelopoiesis in human hematopoietic stem/progenitor cells. Cell Death Differ. 2019;26:1796-1812. https://doi.org/10.1038/s41418-018-0245-x
  41. da Silva FM, Massart-Leen AM, Burvenich C. Development and maturation of neutrophils. Vet Q. 1994;16:220-225. https://doi.org/10.1080/01652176.1994.9694452
  42. Riffelmacher T, Clarke A, Richter FC, Stranks A, Pandey S, Danielli S, Hublitz P, Yu Z, Johnson E, Schwerd T, McCullagh J, Uhlig H, Jacobsen SEW, Simon AK. Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity. 2017;47:466-480.e5. https://doi.org/10.1016/j.immuni.2017.08.005
  43. Kantari C, Pederzoli-Ribeil M, Witko-Sarsat V. The role of neutrophils and monocytes in innate immunity. Contrib Microbiol. 2008;15:118-146. https://doi.org/10.1159/000136335
  44. Wong CO, Gregory S, Hu H, Chao Y, Sepulveda VE, He Y, Li- Kroeger D, Goldman WE, Bellen HJ, Venkatachalam K. Lysosomal degradation is required for sustained phagocytosis of bacteria by macrophages. Cell Host Microbe. 2017;21:719-730.e6. https://doi.org/10.1016/j.chom.2017.05.002
  45. Lee WL, Harrison RE, Grinstein S. Phagocytosis by neutrophils. Microbes Infect . 2003;5:1299-1306. https://doi.org/10.1016/j.micinf.2003.09.014
  46. Chargui A, El May MV. Autophagy mediates neutrophil responses to bacterial infection. APMIS. 2014;122:1047-1058. https://doi.org/10.1111/apm.12271
  47. Gong L, Cullinane M, Treerat P, Ramm G, Prescott M, Adler B, Boyce JD, Devenish RJ. The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis. PLoS One. 2011;6:e17852. https://doi.org/10.1371/journal.pone.0017852
  48. Ramachandran G, Gade P, Tsai P, Lu W, Kalvakolanu DV, Rosen GM, Cross AS. Potential role of autophagy in the bactericidal activity of human PMNs for Bacillus anthracis. Pathog Dis. 2015;73: ftv080. https://doi.org/10.1093/femspd/ftv080
  49. Itoh H, Matsuo H, Kitamura N, Yamamoto S, Higuchi T, Takematsu H, Kamikubo Y, Kondo T, Yamashita K, Sasada M, Takaori-Kondo A, Adachi S. Enhancement of neutrophil autophagy by an IVIG preparation against multidrug-resistant bacteria as well as drug-sensitive strains. J Leukoc Biol. 2015;98:107-117. https://doi.org/10.1189/jlb.4A0813-422RRR
  50. Ullah I, Ritchie ND, Evans TJ. The interrelationship between phagocytosis, autophagy and formation of neutrophil extracellular traps following infection of human neutrophils by Streptococcus pneumoniae. Innate Immun. 2017;23:413-423. https://doi.org/10.1177/1753425917704299
  51. Wang C, Mendonsa GR, Symington JW, Zhang Q, Cadwell K, Virgin HW, Mysorekar IU. Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo. Proc Natl Acad Sci U S A. 2012;109:11008-11013. https://doi.org/10.1073/pnas.1203952109
  52. Rinchai D, Riyapa D, Buddhisa S, Utispan K, Titball RW, Stevens MP, Stevens JM, Ogawa M, Tanida I, Koike M, Uchiyama Y, Ato M, Lertmemongkolchai G. Macroautophagy is essential for killing of intracellular Burkholderia pseudomallei in human neutrophils. Autophagy. 2015;11:748-755. https://doi.org/10.1080/15548627.2015.1040969
  53. Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P, Vanden Berghe T. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 2011; 18:581-588. https://doi.org/10.1038/cdd.2011.1
  54. Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W, Brinkmann V, Jungblut PR, Zychlinsky A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009;5:e1000639. https://doi.org/10.1371/journal.ppat.1000639
  55. Boe DM, Curtis BJ, Chen MM, Ippolito JA, Kovacs EJ. Extracellular traps and macrophages: new roles for the versatile phagocyte. J Leukoc Biol. 2015;97:1023-1035. https://doi.org/10.1189/jlb.4RI1014-521R
  56. Kenny EF, Herzig A, Kruger R, Muth A, Mondal S, Thompson PR, Brinkmann V, Bernuth HV, Zychlinsky A. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife. 2017;6:e24437. https://doi.org/10.7554/eLife.24437
  57. Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012;189:2689-2695. https://doi.org/10.4049/jimmunol.1201719
  58. Peng HH, Liu YJ, Ojcius DM, Lee CM, Chen RH, Huang PR, Martel J, Young JD. Mineral particles stimulate innate immunity through neutrophil extracellular traps containing HMGB1. Sci Rep. 2017;7:16628. https://doi.org/10.1038/s41598-017-16778-4
  59. Neumann A, Papareddy P, Westman J, Hyldegaard O, Snall J, Norrby-Teglund A, Herwald H. Immunoregulation of neutrophil extracellular trap formation by endothelial-derived p33 (gC1q receptor). J Innate Immun. 2018;10:30-43. https://doi.org/10.1159/000480386
  60. van der Linden M, Westerlaken GHA, van der Vlist M, van Montfrans J, Meyaard L. Differential signalling and kinetics of neutrophil extracellular trap release revealed by quantitative live imaging. Sci Rep. 2017;7:6529. https://doi.org/10.1038/s41598-017-06901-w
  61. Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, Maiuri L, Maseri A, D'Angelo A, Bianchi ME, Rovere- Querini P, Manfredi AA. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. 2014;12:2074-2088. https://doi.org/10.1111/jth.12710
  62. Chatfield SM, Grebe K, Whitehead LW, Rogers KL, Nebl T, Murphy JM, Wicks IP. Monosodium urate crystals generate nuclease resistant neutrophil extracellular traps via a distinct molecular pathway. J Immunol. 2018;200:1802-1816. https://doi.org/10.4049/jimmunol.1701382
  63. Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R, Noppen S, Delforge M, Willems J, Vandenabeele P. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 2011;21:290-304. https://doi.org/10.1038/cr.2010.150
  64. Douda DN, Khan MA, Grasemann H, Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A. 2015;112:2817-2822. https://doi.org/10.1073/pnas.1414055112
  65. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M, Bowden MG, Hussain M, Zhang K, Kubes P. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185:7413-7425. https://doi.org/10.4049/jimmunol.1000675
  66. Chow OA, von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL, Gallo RL, Monestier M, Wang Y, Glass CK, Nizet V. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe. 2010;8:445-454. https://doi.org/10.1016/j.chom.2010.10.005
  67. Byrd AS, O'Brien XM, Johnson CM, Lavigne LM, Reichner JS. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J Immunol. 2013;190:4136-4148. https://doi.org/10.4049/jimmunol.1202671
  68. Stranks AJ, Hansen AL, Panse I, Mortensen M, Ferguson DJ, Puleston DJ, Shenderov K, Watson AS, Veldhoen M, Phadwal K, Cerundolo V, Simon AK. Autophagy controls acquisition of aging features in macrophages. J Innate Immun. 2015;7:375-391. https://doi.org/10.1159/000370112
  69. Ma R, Li T, Cao M, Si Y, Wu X, Zhao L, Yao Z, Zhang Y, Fang S, Deng R, Novakovic VA, Bi Y, Kou J, Yu B, Yang S, Wang J, Zhou J, Shi J. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy. Cell Death Dis. 2016;7:e2283. https://doi.org/10.1038/cddis.2016.186
  70. Germic N, Stojkov D, Oberson K, Yousefi S, Simon HU. Neither eosinophils nor neutrophils require ATG5-dependent autophagy for extracellular DNA trap formation. Immunology. 2017;152:517-525. https://doi.org/10.1111/imm.12790
  71. Rorvig S, Ostergaard O, Heegaard NH, Borregaard N. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors. J Leukoc Biol. 2013;94:711-721. https://doi.org/10.1189/jlb.1212619
  72. Masson PL, Heremans JF, Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med. 1969;130:643-658. https://doi.org/10.1084/jem.130.3.643
  73. Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles ininflammation. Microbes Infect. 2003;5:1317-1327. https://doi.org/10.1016/j.micinf.2003.09.008
  74. Patel JM, Sapey E, Parekh D, Scott A, Dosanjh D, Gao F, Thickett DR. Sepsis Induces a Dysregulated neutrophil phenotype that is associated with increased mortality. Mediators Inflamm. 2018; 2018:4065362.
  75. Meng W, Paunel-Gorgulu A, Flohe S, Hoffmann A, Witte I, MacKenzie C, Baldus SE, Windolf J, Logters TT. Depletion of neutrophil extracellular traps in vivo results in hypersusceptibility to polymicrobial sepsis in mice. Crit Care. 2012;16:R137. https://doi.org/10.1186/cc11442
  76. Konstantinidis T, Kambas K, Mitsios A, Panopoulou M, Tsironidou V, Dellaporta E, Kouklakis G, Arampatzioglou A, Angelidou I, Mitroulis I, Skendros P, Ritis K. Immunomodulatory role of clarithromycin in acinetobacter baumannii infection via formation of neutrophil extracellular traps. Antimicrob Agents Chemother. 2015;60:1040-1048.
  77. Sharma A, Steichen AL, Jondle CN, Mishra BB, Sharma J. Protective role of Mincle in bacterial pneumonia by regulation of neutrophil mediated phagocytosis and extracellular trap formation. J Infect Dis. 2014;209:1837-1846. https://doi.org/10.1093/infdis/jit820
  78. Li XF, Chen DP, Ouyang FZ, Chen MM, Wu Y, Kuang DM, Zheng L. Increased autophagy sustains the survival and pro-tumourigenic effects of neutrophils in human hepatocellular carcinoma. J Hepatol. 2015;62:131-139. https://doi.org/10.1016/j.jhep.2014.08.023
  79. Park J, Wysocki RW, Amoozgar Z, Maiorino L, Fein MR, Jorns J, Schott AF, Kinugasa-Katayama Y, Lee Y, Won NH, Nakasone ES, Hearn SA, Kuttner V, Qiu J, Almeida AS, Perurena N, Kessenbrock K, Goldberg MS, Egeblad M. Cancer cells induce metastasissupporting neutrophil extracellular DNA traps. Sci Transl Med. 2016;8:361ra138. https://doi.org/10.1126/scitranslmed.aag1711
  80. Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H, Tsung A. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76:1367-1380. https://doi.org/10.1158/0008-5472.CAN-15-1591
  81. Najmeh S, Cools-Lartigue J, Rayes RF, Gowing S, Vourtzoumis P, Bourdeau F, Giannias B, Berube J, Rousseau S, Ferri LE, Spicer JD. Neutrophil extracellular traps sequester circulating tumor cells via ${\beta}$1-integrin mediated interactions. Int J Cancer. 2017;140:2321-2330. https://doi.org/10.1002/ijc.30635
  82. Leach J, Morton JP, Sansom OJ. Neutrophils: Homing in on the myeloid mechanisms of metastasis. Mol Immunol. 2019;110:69-76. https://doi.org/10.1016/j.molimm.2017.12.013
  83. Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89:3503-3521. https://doi.org/10.1182/blood.V89.10.3503
  84. Cowland JB, Borregaard N. Granulopoiesis and granules of human neutrophils. Immunol Rev. 2016;273:11-28. https://doi.org/10.1111/imr.12440
  85. Lawrence SM, Corriden R, Nizet V. The ontogeny of a neutrophil: mechanisms of granulopoiesis and homeostasis. Microbiol Mol Biol Rev. 2018;82:e00057-17.
  86. Gullberg U, Andersson E, Garwicz D, Lindmark A, Olsson I. Biosynthesis, processing and sorting of neutrophil proteins: insight into neutrophil granule development. Eur J Haematol. 1997;58:137-153. https://doi.org/10.1111/j.1600-0609.1997.tb00940.x
  87. Lacy P. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin Immunol. 2006;2:98-108. https://doi.org/10.1186/1710-1492-2-3-98
  88. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol . 2011;11:519-531. https://doi.org/10.1038/nri3024
  89. Tecchio C, Cassatella MA. Neutrophil-derived cytokines involved in physiological and pathological angiogenesis. Chem Immunol Allergy. 2014;99:123-137. https://doi.org/10.1159/000353358
  90. Tecchio C, Micheletti A, Cassatella MA. Neutrophil-derived cytokines: facts beyond expression. Front Immunol. 2014;5:508.
  91. Naegelen I, Beaume N, Plançon S, Schenten V, Tschirhart EJ, Brechard S. Regulation of neutrophil degranulation and cytokine secretion: a novel model approach based on linear fitting. J Immunol Res. 2015;2015:817038. https://doi.org/10.1155/2015/817038
  92. Angelidou I, Chrysanthopoulou A, Mitsios A, Arelaki S, Arampatzioglou A, Kambas K, Ritis D, Tsironidou V, Moschos I, Dalla V, Stakos D, Kouklakis G, Mitroulis I, Ritis K, Skendros P. REDD1/ autophagy pathway is associated with Neutrophil-Driven IL-1${\beta}$ inflammatory response in active ulcerative colitis. J Immunol. 2018; 200:3950-3961. https://doi.org/10.4049/jimmunol.1701643
  93. Apostolidou E, Skendros P, Kambas K, Mitroulis I, Konstantinidis T, Chrysanthopoulou A, Nakos K, Tsironidou V, Koffa M, Boumpas DT, Ritis K. Neutrophil extracellular traps regulate IL-1${\beta}$-mediated inflammation in familial Mediterranean fever. Ann Rheum Dis. 2016;75:269-277. https://doi.org/10.1136/annrheumdis-2014-205958
  94. Iula L, Keitelman IA, Sabbione F, Fuentes F, Guzman M, Galletti JG, Gerber PP, Ostrowski M, Geffner JR, Jancic CC, Trevani AS. Autophagy mediates interleukin-1${\beta}$ secretion in human neutrophils. Front Immunol. 2018;9:269. https://doi.org/10.3389/fimmu.2018.00269
  95. Harris J. Autophagy and cytokines. Cytokine. 2011;56:140-144. https://doi.org/10.1016/j.cyto.2011.08.022
  96. Harris J, Hartman M, Roche C, Zeng SG, O'Shea A, Sharp FA, Lambe EM, Creagh EM, Golenbock DT, Tschopp J, Kornfeld H, Fitzgerald KA, Lavelle EC. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem. 2011; 286:9587-9597. https://doi.org/10.1074/jbc.M110.202911
  97. Netea-Maier RT, Plantinga TS, van de Veerdonk FL, Smit JW, Netea MG. Modulation of inflammation by autophagy: consequences for human disease. Autophagy. 2016;12:245-260. https://doi.org/10.1080/15548627.2015.1071759
  98. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469:323-335. https://doi.org/10.1038/nature09782
  99. Zhang F, Liu AL, Gao S, Ma S, Guo SB. Neutrophil dysfunction in sepsis. Chin Med J (Engl). 2016;129:2741-2744. https://doi.org/10.4103/0366-6999.193447
  100. Segal AW, Loewi G. Neutrophil dysfunction in Crohn's disease. Lancet . 1976;2:219-221. https://doi.org/10.1016/S0140-6736(02)93044-8
  101. Davis WC, Douglas SD, Fudenberg HH. A selective neutrophil dysfunction syndrome: impaired killing of staphylococci. Ann Intern Med. 1968;69:1237-1243. https://doi.org/10.7326/0003-4819-69-6-1237
  102. Jin L, Batra S, Jeyaseelan S. Deletion of Nlrp3 augments survival during polymicrobial sepsis by decreasing autophagy and enhancing phagocytosis. J Immunol. 2017;198:1253-1262. https://doi.org/10.4049/jimmunol.1601745
  103. Haimovici A, Brigger D, Torbett BE, Fey MF, Tschan MP. Induction of the autophagy-associated gene MAP1S via PU.1 supports APL differentiation. Leuk Res. 2014;38:1041-1047. https://doi.org/10.1016/j.leukres.2014.06.010
  104. Schlafli AM, Shan-Krauer D, Garattini E, Tschan MP. Regulation and function of autophagy in retinoic acid mediated therapy of myeloid leukemia and breast cancer. Ital J Anat Embryol. 2015;120:9-10.
  105. Britschgi A, Yousefi S, Laedrach J, Shan D, Simon H-U, Tobler A, Fey MF, Tschan MP. Blocking the autophagy gene 5 (ATG5) impairs ATRA-induced myeloid differentiation, and ATG5 is downregulated in AML. Blood. 2008;112:309. https://doi.org/10.1182/blood.v112.11.309.309
  106. Abdel Fattah E, Bhattacharya A, Herron A, Safdar Z, Eissa NT. Critical role for IL-18 in spontaneous lung inflammation caused by autophagy deficiency. J Immunol. 2015;194:5407-5416. https://doi.org/10.4049/jimmunol.1402277
  107. Skendros P, Chrysanthopoulou A, Rousset F, Kambas K, Arampatzioglou A, Mitsios A, Bocly V, Konstantinidis T, Pellet P, Angelidou I, Apostolidou E, Ritis D, Tsironidou V, Galtsidis S, Papagoras C, Stakos D, Kouklakis G, Dalla V, Koffa M, Mitroulis I, et al . Regulated in development and DNA damage responses 1 (REDD1) links stress with IL-1${\beta}$-mediated familial Mediterranean fever attack through autophagy-driven neutrophil extracellular traps. J Allergy Clin Immunol. 2017;140:1378-1387.e13. https://doi.org/10.1016/j.jaci.2017.02.021

Cited by

  1. Bovine Neutrophils Release Extracellular Traps and Cooperate With Macrophages in Mycobacterium avium subsp. paratuberculosis clearance In Vitro vol.12, 2021, https://doi.org/10.3389/fimmu.2021.645304
  2. An Autophagy Modulator Peptide Prevents Lung Function Decrease and Corrects Established Inflammation in Murine Models of Airway Allergy vol.10, pp.9, 2020, https://doi.org/10.3390/cells10092468
  3. Role of Neutrophils on the Ocular Surface vol.22, pp.19, 2021, https://doi.org/10.3390/ijms221910386