• 제목/요약/키워드: Extracellular

검색결과 3,576건 처리시간 0.023초

Immune cell-derived small extracellular vesicles in cancer treatment

  • Choi, Sung-Jin;Cho, Hanchae;Yea, Kyungmoo;Baek, Moon-Chang
    • BMB Reports
    • /
    • 제55권1호
    • /
    • pp.48-56
    • /
    • 2022
  • Small extracellular vesicles (sEVs) secreted by most cells carry bioactive macromolecules including proteins, lipids, and nucleic acids for intercellular communication. Given that some immune cell-derived sEVs exhibit anti-cancer properties, these sEVs have received scientific attention for the development of novel anti-cancer immunotherapeutic agents. In this paper, we reviewed the latest advances concerning the biological roles of immune cell-derived sEVs for cancer therapy. sEVs derived from immune cells including dendritic cells (DCs), T cells, natural-killer (NK) cells, and macrophages are good candidates for sEV-based cancer therapy. Besides their role of cancer vaccines, DC-shed sEVs activated cytotoxic lymphocytes and killed tumor cells. sEVs isolated from NK cells and chimeric antigen receptor (CAR) T cells exhibited cytotoxicity against cancer cells. sEVs derived from CD8+ T and CD4+ T cells inhibited cancer-associated cells in tumor microenvironment (TME) and activated B cells, respectively. M1-macrophage-derived sEVs induced M2 to M1 repolarization and also created a pro-inflammatory environment. Hence, these sEVs, via mono or combination therapy, could be considered in the treatment of cancer patients in the future. In addition, sEVs derived from cytokine-stimulated immune cells or sEV engineering could improve their anti-tumor potency.

The Role of Extracellular Vesicles in Senescence

  • Oh, Chaehwan;Koh, Dahyeon;Jeon, Hyeong Bin;Kim, Kyoung Mi
    • Molecules and Cells
    • /
    • 제45권9호
    • /
    • pp.603-609
    • /
    • 2022
  • Cells can communicate in a variety of ways, such as by contacting each other or by secreting certain factors. Recently, extracellular vesicles (EVs) have been proposed to be mediators of cell communication. EVs are small vesicles with a lipid bilayer membrane that are secreted by cells and contain DNA, RNAs, lipids, and proteins. These EVs are secreted from various cell types and can migrate and be internalized by recipient cells that are the same or different than those that secrete them. EVs harboring various components are involved in regulating gene expression in recipient cells. These EVs may also play important roles in the senescence of cells and the accumulation of senescent cells in the body. Studies on the function of EVs in senescent cells and the mechanisms through which nonsenescent and senescent cells communicate through EVs are being actively conducted. Here, we summarize studies suggesting that EVs secreted from senescent cells can promote the senescence of other cells and that EVs secreted from nonsenescent cells can rejuvenate senescent cells. In addition, we discuss the functional components (proteins, RNAs, and other molecules) enclosed in EVs that enter recipient cells.

Stress Granules Inhibit Coxsackievirus B3-Mediated Cell Death via Reduction of Mitochondrial Reactive Oxygen Species and Viral Extracellular Release

  • Ji-Ye Park;Ok Sarah Shin
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권5호
    • /
    • pp.582-590
    • /
    • 2023
  • Stress granules (SGs) are cytoplasmic aggregates of RNA-protein complexes that form in response to various cellular stresses and are known to restrict viral access to host translational machinery. However, the underlying molecular mechanisms of SGs during viral infections require further exploration. In this study, we evaluated the effect of SG formation on cellular responses to coxsackievirus B3 (CVB3) infection. Sodium arsenite (AS)-mediated SG formation suppressed cell death induced by tumor necrosis factor-alpha (TNF-a)/cycloheximide (CHX) treatment in HeLa cells, during which G3BP1, an essential SG component, contributed to the modulation of apoptosis pathways. SG formation in response to AS treatment blocked CVB3-mediated cell death, possibly via the reduction of mitochondrial reactive oxygen species. Furthermore, we examined whether AS treatment would affect small extracellular vesicle (sEV) formation and secretion during CVB3 infection and modulate human monocytic cell (THP-1) response. CVB3-enriched sEVs isolated from HeLa cells were able to infect and replicate THP-1 cells without causing cytotoxicity. Interestingly, sEVs from AS-treated HeLa cells inhibited CVB3 replication in THP-1 cells. These findings suggest that SG formation during CVB3 infection modulates cellular response by inhibiting the release of CVB3-enriched sEVs.

Tumor Stroma as a Therapeutic Target for Pancreatic Ductal Adenocarcinoma

  • Dae Ui Lee;Beom Seok Han;Kyung Hee Jung;Soon-Sun Hong
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.281-290
    • /
    • 2024
  • Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis owing to its desmoplastic stroma. Therefore, therapeutic strategies targeting this tumor stroma should be developed. In this study, we describe the heterogeneity of cancer-associated fibroblasts (CAFs) and their diverse roles in the progression, immune evasion, and resistance to treatment of PDAC. We subclassified the spatial distribution and functional activity of CAFs to highlight their effects on prognosis and drug delivery. Extracellular matrix components such as collagen and hyaluronan are described for their roles in tumor behavior and treatment outcomes, implying their potential as therapeutic targets. We also discussed the roles of extracellular matrix (ECM) including matrix metalloproteinases and tissue inhibitors in PDAC progression. Finally, we explored the role of the adaptive and innate immune systems in shaping the PDAC microenvironment and potential therapeutic strategies, with a focus on immune cell subsets, cytokines, and immunosuppressive mechanisms. These insights provide a comprehensive understanding of PDAC and pave the way for the development of prognostic markers and therapeutic interventions.

Nucleocapsid and Spike Proteins of SARS-CoV-2 Drive Neutrophil Extracellular Trap Formation

  • Young-Jin Youn;Yu-Bin Lee;Sun-Hwa Kim;Hee Kyung Jin;Jae-sung Bae;Chang-Won Hong
    • IMMUNE NETWORK
    • /
    • 제21권2호
    • /
    • pp.16.1-16.8
    • /
    • 2021
  • Patients with severe coronavirus disease 2019 (COVID-19) demonstrate dysregulated immune responses including exacerbated neutrophil functions. Massive neutrophil infiltrations accompanying neutrophil extracellular trap (NET) formations are also observed in patients with severe COVID-19. However, the mechanism underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced NET formation has not yet been elucidated. Here we show that 2 viral proteins encoded by SARS-CoV-2, the nucleocapsid protein and the whole spike protein, induce NET formation from neutrophils. NET formation was ROSindependent and was completely inhibited by the spleen tyrosine kinase inhibition. The inhibition of p38 MAPK, protein kinase C, and JNK signaling pathways also inhibited viral protein-induced NET formation. Our findings demonstrate one method by which SARSCoV-2 evades innate immunity and provide a potential target for therapeutics to treat patients with severe COVID-19.

착상전 생쥐 자궁에서 콜라겐의 변화 (Altering of Collagens in Early Pregnant Mouse Uterus)

  • 전용필
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권1호
    • /
    • pp.1-11
    • /
    • 2007
  • 착상기 이전 자궁에서 특이적 자궁내막 준비가 진행되어야 하는데, 이는 자궁 내막의 점진적 분화로 배아의 착상과 성공적 임신에 절대적으로 필요하다. 배아 발생 동안에 관찰되는 조직의 재구성은 세포외 기질을 포함한 다양한 요인에 의해 조절된다. 임신 동안에 관찰되는 극적인 변화로는 배아의 이동, 탈락막 반응, 태반의 분화를 그 예로 들 수 있다. 배아와 자궁간의 성공적 착상을 위한 변화들은 배아와 자궁의 착상을 위한 능력 갖출 수 있도록 한다. 이러한 변화과정 중에, 콜라겐이 주성분인 세포외 기질의 극적인 변화가 진행된다. 이러한 변화는 매우 복잡하여 그 기작을 밝히는 것은 쉽지 않으나, 최근 들어 PCR-select cDNA subtraction 방법, microarry 방법 등 대단위 유전자 동정 방법들을 이용하여 많은 후보 유전자가 동정되었다. 스테로이드 호르몬은 임신과 임신 유지에 중요한 역할을 수행하며, 세포외 기질의 재구성을 엄격하게 성스테로이드 호르몬에 의한 유전자 네트워크를 통하여 조절한다. 자궁의 세포외 기질의 병리적 조절이 당뇨병 등에서 보고되고 있다. 세포외 기질의 재구성은 착상과 태아와 자궁의 발달을 이해하는 데 중요하고, 또한 생식과 관련된 질병을 극복하는 데 중요하다. 비록 세포외 기질의 구성성분이 매우 다양하고 복잡하여 논의할 것이 무척 많으나, 본 종설에서는 착상기를 전후한 시기에 콜라겐의 변화를 중심으로 논하였다.

  • PDF

Effect of pH on the Vascular Tone and $^{45}Ca$ Uptake in the Aorta of Spontaneously Hypertensive Rats

  • Chang, Seok-Jong;Jeon, Byeong-Hwa;Kim, Se-Hoon;Kim, Hoe-Suk;Park, Hae-Kun
    • The Korean Journal of Physiology
    • /
    • 제28권2호
    • /
    • pp.169-179
    • /
    • 1994
  • The effect of extracellular and intracellular pH on vascular tone and $^{45}Ca$ uptake were investigated in aortic strips and dispersed single aortic smooth muscle cells of spontaneously hypertensive rats (SHR) and aged-matched Wistar-Kyoto rats (WKY). The contraction produced by a change of extracellular pH (pHo) in the range of $6.5{\sim}8.3$ was estimated by comparison with the level of vascular tone at pH 7.4. Contraction was induced below pHo 6.5 in WKY, pHo 7.1 in SHR, and over pHo 8.0 on both strains. The amplitude of contraction induced by high pHo (over pHo 7.7) was similar in SHR and WKY, but that induced by low pHo (below pHo 7.1) in SHR was greater than that in WKY. Either high pHo- or low pHo-induced contractions in WKY and SHR were not induced in the Ca-free Tyrode's solution and were induced by the addition of Ca. $^{45}Ca$ uptake increased progressively as pHo was increased from 6.8 to 8.1 in the single aortic smooth muscle cells of WKY and SHR. $NH_4Cl$ induced a gradually developing contraction in a dose-dependent manner $(5\;mM{\sim}30\;mM)$ and the removal of $NH_4Cl$ induced transient contraction was followed by profound relaxation in the aortic rings of both strains. The contractions induced by $NH_4Cl$ or by the removal of $NH_4Cl$ in SHR were significantly greater than that in WKY. These contractions were not induced in Ca-free Tyrode's solution. $^{45}Ca$ uptake was increased by $NH_4Cl$ (20 mM) and was not changed by the removal of $NH_4Cl$ (20 mM) in the aortic strips of WKY and SHR. As a summary of above results, the vascular tone of SHR was more sensitive to the change pHi and pHo than that of WKY. The contractions induced by change of extracellular or intracellular pH depended on extracellular Ca in the aorta of SHR nnd WKY. However, the Ca uptake was in accord with the changes of contraction but increase in contraction by low pH was not accompanied by an increase in Ca uptake in both strains.

  • PDF

Chryseobacterium sp. JK1이 분비하는 세포외 단백질분해효소 특성 (Characterization of Extracellular Protease Secreted from Chryseobacterium sp. JK1)

  • 이유경;오지성;노동현
    • 미생물학회지
    • /
    • 제49권1호
    • /
    • pp.78-82
    • /
    • 2013
  • 이전의 연구에서 토양으로부터 많은 양의 세포외 단백질분해 효소를 생산하는 신종 중온세균 Chryseobacterium sp. JK1를 분리하였다. 이 균주가 생산하는 단백질 분해효소의 특성조사 결과 최적반응온도와 pH는 각각 $40^{\circ}C$와 7.0이였으며, 좁은 최적온도 구간과 비교적 넓은 pH 구간인 pH 6.0-9.0에서 높은 활성을 보여주었다. 그리고 단백질 분해효소는 EDTA 또는 EGTA, PMSF와 금속이온 $Ag^+$ 또는 $Cu^{2+}$의 첨가에 의해 강하게 저해 되었으며, $Al^{3+}$의 첨가에 의해 약하게 저해되었다. Pepstatin과 금 속이온 $K^+$, $Ca^{2+}$, $Na^+$, $Fe^{2+}$ 또는 $Mg^{2+}$의 첨가는 저해에 큰 영향을 주지 않았다. 이와 반대로 단백질분해효소는 이가 금속이온인 $Mn^{2+}$ (5 mM)의 첨가에 의해 효소활성이 향상되었다. 농축된 배양 상등액의 활성염색 분석으로 67과 145 kDa 크기의 주요 밴드 두 개가 관찰되었다. 이러한 결과들로 Chryseobacterium sp. JK1 균주가 식품산업에 응용 가능한 세포외 중성의 serine 단백질 분해효소를 생산한다는 것을 알 수 있었다.

다양한 세포외기질이 배양 골아세포의 이동에 미치는 영향 (The Effects of Various Extracellular Matrices on Motility of Cultured MC3T3-E1 Cell)

  • 박병윤;서상우;이원재;류창우;나동균;손현주;박종철
    • Archives of Plastic Surgery
    • /
    • 제32권2호
    • /
    • pp.143-148
    • /
    • 2005
  • Chemotactic migration of bone forming cell, osteoblast, is an important event during bone formation, bone remodeling, and fracture healing. Migration of cells is mediated by adhesion receptors, such as integrins, that link the cell to extracellular matrix ligands, type I collagen, fibronectin, laminin and depend on interaction between integrin and extracellular ligand. Our study was designed to investigate the effect of extracellular matrix like fibronectin, laminin, type I collagen on migration of osteoblast. Migration distance and speed of MC3T3-E1 cell on extracellular matrix-coated glass were measured for 24 hours using 0.01% type I collagen, 0.01% fibronectin, 100 microliter/ml laminin. The migration distance and speed of MC3T3-E1 cell was compared using a video-microscopy system. To determine migration speed, cells were viewed with a 4 phase- contrast lens and video recorded. Images were captured using a color CCD camera and saved in 8-bit full-color mode. The migration distance on 0.01% type I collagen or 0.01% fibronectin was longer than that on $100{\mu}l/ml$ laminin-coated glass. The migration speed on fibronectin-coated glass was 68 micrometer/hour which was fastest. The migration speed on type I collagen-coated glass was similar with that on fibronectin-coated glass. The latter two migration speeds were faster than that on no-coated glass. On the other hand, the average migration speed on laminin-coated glass was 37micrometer/hour and not different from that of control group. In conclusion, the extracelluar matrix ligands such as type I collagen and fibronectin seem to play an important role in cell migration. The type I collagen or fibronectin coated scaffold is more effective for migration of osteoblast in tissue engineering process.

A Study on the $Na^+/Ca^{2+}$ Exchange Mechanism in the Smooth Muscle of Guinea-pig Stomach

  • Kim, Eui-Yong;Han, Jin;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • 제26권1호
    • /
    • pp.55-68
    • /
    • 1992
  • The effects of changes in extracellular $Na^+\;and\;Ca^+$ concentration on the membrane potential and contractility were studied in the antral circular muscle of guinea pig stomach in order to elucidate the existence and the nature of $Na^+/Ca^{2+}$ exchange mechanism. All experiments were performed in tris buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C.$ The treatment of $10^{-5}$ ouabain was performed to induce intracellular $Na^+$ loading prior to the start of experiment. The results were as follows: 1. $Na^+$-free Tyrode or high $Ca^{2+}$-Tyrode solution hyperpolarized the membrane potential and induced contracture. The time course of contracture was similar to that of change in membrane potential. 2. The degree of hyperpolarization and the amplitude of contracture decreased in accordance with the increase of extracellular $Na^+$ concentration. 3. $Na^+$-free contracture was developed even after blocking the influence of intrinsic nerves by the pretreatment with atropine, guanethidine and TTX. 4. $Ca^{2+}$-channel blockers(D-600 or $Mn^{2+}$) and the blocker of intracellular $Ca^{2+}$ release from sarcoplasmic reticulum(ryanodine) did not suppress the development of $Na^+$-free contracture. And also, dinitrophenol had no effect on $Na^+$-free contracture. 5. Dose-response relationship between extracellular $Na^+$ concentrations and the magnitude of contractures showed a sigmoid pattern. The slope of straight line from Hill plot was 2.7. 6. In parallel with the increase of extracellular $Ca^{2+}$ concentration, the amplitude of contracture increased dose dependently and was maximum at 8 mM $Ca^{2+}$-Tyrode solution. 7. The relationship between extracellular $Ca^{2+}$ concentrations and the magnitude of contractures showed hyperbolic pattern. The slope of straight line from Hill plot was 1.1. From the above results, it is suggested that $Na^+/Ca^{2+}$ exchange mechanism exists in the antral circular muscle of guinea pig stomach and this mechanism affects the membrane potential electrogenically.

  • PDF