• Title/Summary/Keyword: Extra Sensor

Search Result 93, Processing Time 0.037 seconds

Implementation of Bistatic Backscatter Wireless Communication System Using Ambient Wi-Fi Signals

  • Kim, Young-Han;Ahn, Hyun-Seok;Yoon, Changseok;Lim, Yongseok;Lim, Seung-ok;Yoon, Myung-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1250-1264
    • /
    • 2017
  • This paper presents the architecture design, implement, experimental validation of a bistatic backscatter wireless communication system in Wi-Fi network. The operating principle is to communicate a tag's data by detecting the power level of the power modulated Wi-Fi packets to be reflected or absorbed by backscatter tag, in interconnecting with Wi-Fi device and Wi-Fi AP. This system is able to provide the identification and sensor data of tag on the internet connectivity without requiring extra device for reading data, because this uses an existing Wi-Fi AP infrastructure. The backscatter tag consists of Wi-Fi energy harvesting part and a backscatter transmitter/a power-detecting receiver part. This tag can operate by harvesting and generating energy from Wi-Fi signal power. Wi-Fi device decodes information of the tag data by recognizing the power level of the backscattered Wi-Fi packets. Wi-Fi device receives the backscattered Wi-Fi packets and generates the tag's data pattern in the time-series of channel state information (CSI) values. We believe that this system can be achieved wireless connectivity for ultra- low-power IoT and wearable device.

Development of Radiation Dosimeter using Commercial p-MOSFET (상용 p-MOSFET을 이용한 방사선 선량계 개발)

  • Lee, Nam-Ho;Choi, Young-Su;Lee, Yong-B.;Youk, Geun-Uck
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.95-101
    • /
    • 1999
  • When a metal oxide field effect transistor (MOSFET) is exposed to ionizing radiation, electron/hole pairs are generated in its oxide layer. The slow moving holes of them are trapped in the oxide layer of p-MOSFET and appear as extra charges that change the characteristics of the transistor. The radiation-induced charges directly impact the threshold (turn-on) voltage of the transistor. This paper describes the use of the radiation-induced threshold voltage change as an accumulated radiation dose monitoring sensor. Two kinds of commercial p-type MOSFETS were tested in a Co-60 gamma irradiation facility to see their capabilities as a radiation dosimeter. We found that the transistors showed good linearity in their threshold voltage shift characteristics with radiation dose. The results demonstrate the potential use of commercial p-MOSFETS as inexpensive radiation sensors for the first time.

  • PDF

A Conceptual Design of HAUSAT-1(CubeSat) Satellite

  • Kim, Joon-Tae;Kim, Young-Suk;Seo, Seung-Won;Kim, Young-Hyun;Chang, Young-Keun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.61-73
    • /
    • 2002
  • This paper addresses the conceptual design results of the HAUSAT-1 (Hankuk Aviation University SATellite-1), developed by Space System Research Lab. of Hankuk Aviation Univ., which is a new generation picosatellite. This project has been funded by Korean Government for the purpose of developing the space core technology. This is the first attempt at the level of university in Korea to develop the satellite weighing less than 1kg and accelerates opportunities with low construction, low launch cost space experiment platforms. The purpose of the HAUSAT-1 project is to offer graduate and undergraduate students great opportunities to be able to understand the design process of satellite development as a team member. Its mission objectives are to track its position by the GPS receiver system, to deploy the thin film solar cell panel to generate extra power, and to measure plasma density and temperature with the plasma sensor. The HAUSAT-1 will orbit at the altitude of 650 km with 65 degree inclination angle with 12 months of design mission life. It is planned to be launched on November 2003 by Russian launch vehicle "Dnepr".

In Situ Sensing of Copper-plating Thickness Using OPD-regulated Optical Fourier-domain Reflectometry

  • Nayoung, Kim;Do Won, Kim;Nam Su, Park;Gyeong Hun, Kim;Yang Do, Kim;Chang-Seok, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.38-46
    • /
    • 2023
  • Optical Fourier-domain reflectometry (OFDR) sensors have been widely used to measure distances with high resolution and speed in a noncontact state. In the electroplating process of a printed circuit board, it is critically important to monitor the copper-plating thickness, as small deviations can lead to defects, such as an open or short circuit. In this paper we employ a phase-based OFDR sensor for in situ relative distance sensing of a sample with nanometer-scale resolution, during electroplating. We also develop an optical-path difference (OPD)-regulated sensing probe that can maintain a preset distance from the sample. This function can markedly facilitate practical measurements in two aspects: Optimal distance setting for high signal-to-noise ratio OFDR sensing, and protection of a fragile probe tip via vertical evasion movement. In a sample with a centimeter-scale structure, a conventional OFDR sensor will probably either bump into the sample or practically out of the detection range of the sensing probe. To address this limitation, a novel OPD-regulated OFDR system is designed by combining the OFDR sensing probe and linear piezo motors with feedback-loop control. By using multiple OFDR sensors, it is possible to effectively monitor copper-plating thickness in situ and uniformize it at various positions.

Flexible Disjoint Multipath Routing Protocol Using Local Decision in Wireless Sensor Networks (무선 센서 네트워크에서 지역 결정을 통한 유연한 분리형 다중경로 라우팅 프로토콜)

  • Jung, Kwansoo;Yeom, Heegyun;Park, Hosung;Lee, Jeongcheol;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.11
    • /
    • pp.911-923
    • /
    • 2013
  • Multipath routing is one of challenging issues for improving the reliability of end-to-end data delivery in wireless sensor networks. Recently, a disjointedness and management of path have been studying to enhance the robustness and efficiency of the multipath routing. However, previous multipath routing protocols exploit the disjointed multipath construction method that is not to consider the wireless communication environment. In addition, if a path failures is occurred due to the node or link failures in the irregular network environment, they maintain the multipath through the simple method that to construct a new extra path. Even some of them have no a method. In order to cope with the insufficiency of path management, a hole detouring scheme, to bypass the failures area and construct the new paths, was proposed. However, it also has the problem that requires a heavy cost and a delivery suspension to the some or all paths in the hole detouring process due to the centralized and inflexible path management. Due to these limitations and problems, the previous protocols may lead to the degradation of data delivery reliability and the long delay of emergency data delivery. Thus, we propose a flexible disjoint multipath routing protocol which constructs the radio disjoint multipath by considering irregular and constrained wireless sensor networks. It also exploits a localized management based on the path priority in order to efficiently maintain the flexible disjoint multipath. We perform the simulation to evaluate the performance of the proposed method.

Improvement of Thermal Stability of Optical Current Sensors Based on Polymeric Optical Integrated Circuits for Quadrature Phase Interferometry (사분파장 위상 간섭계 폴리머 광집적회로 기반 광전류센서의 온도 안정성 향상 연구)

  • Chun, Kwon-Wook;Kim, Sung-Moon;Park, Tae-Hyun;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.249-254
    • /
    • 2019
  • An optical current sensor device that measures electric current by the principle of the Faraday effect was designed and fabricated. The polarization-rotated reflection interferometer and the quadrature phase interferometer were introduced so as to improve the operational stability. Complex structures containing diverse optical components were integrated in a polymeric optical integrated circuit and manufactured in a small size. This structure allows sensing operation without extra bias feedback control, and reduces the phase change due to environmental temperature changes and vibration. However, the Verdet constant, which determines the Faraday effect, still exhibits an inherent temperature dependence. In this work, we tried to eliminate the residual temperature dependence of the optical current sensor based on polarization-rotated reflection interferometry. By varying the length of the fiber-optic wave plate, which is one of the optical components of the interferometer, we could compensate for the temperature dependence of the Verdet constant. The proposed optical current sensor exhibited measurement errors maintained within 0.2% over a temperature range, from 25℃ to 85℃.

A portable electronic nose (E-Nose) system using PDA device (개인 휴대 단말기 (PDA)를 기반으로 한 휴대용 E-Nose의 개발)

  • Yang, Yoon-Seok;Kim, Yong-Shin;Ha, Seung-Chul;Kim, Yong-Jun;Cho, Seong-Mok;Pyo, Hyeon-Bong;Choi, Chang-Auck
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.69-77
    • /
    • 2005
  • The electronic nose (e-nose) has been used in food industry and quality controls in plastic packaging. Recently it finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. Moreover, the use of portable e-nose enables the on-site measurements and analysis of vapors without extra gas-sampling units. This is expected to widen the application of the e-nose in various fields including point-of-care-test or e-health. In this study, a PDA-based portable e-nose was developed using micro-machined gas sensor array and miniaturized electronic interfaces. The rich capacities of the PDA in its computing power and various interfaces are expected to provide the rapid and application specific development of the diagnostic devices, and easy connection to other facilities through information technology (IT) infra. For performance verification of the developed portable e-nose system, Six different vapors were measured using the system. Seven different carbon-black polymer composites were used for the sensor array. The results showed the reproducibility of the measured data and the distinguishable patterns between the vapor species. Additionally, the application of two typical pattern recognition algorithms verified the possibility of the automatic vapor recognition from the portable measurements. These validated the portable e-nose based on PDA developed in this study.

Analysis and performance evaluation of the parallel typed for a vehicle driving simulator (병렬구조형 차량운전 모사장치의 성능평가 및 분석)

  • 박일경;박경균;김정하;이운성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1481-1484
    • /
    • 1997
  • The vehicle driving simulator expects vehicle motion with real-time simulation arise from driver's steering, accelerating, stopping and simulates motion of vehicl with visula, audio and washout algorithm. And it gives a vivid feeling to driver in reality. Vehicle driving simulator with vehicle integration control system is used for analysis of analysis of vehicle controllaility, steering capacity and safety in various pseudo environment alike. basides, it analyzeds vehicle safety factor dirver's reaction and promotes traffic safety without driver's own risks. The main proceduress of development of the vehicle driving simulator are classified by 3 parts. first the motion base system which can be generated by the motion queues, should be developed. Secondly, real-time vehicle software which can afford the vehicle dynamics, might be constructed. The third procedure is the integration of vehicle driing simulator which can be interconnected between visual systems with motion base. In this study, we are to study of the motion base for a vehicle driving simulator design and that of its real time control and using an extra gyro sensor and accelerometers to find a position and an orientatiion of the moving platform except for calculating forward kinematics. To drive the motion base, we use National Instruments corp's Labview software. Furthemore, we use analysis module for the vehicle motionand the washout algorithm module to consummate driving simulator, which can be driven by human in reality, so we are doing experimentally process about various vehicle motion conditon.

  • PDF

10-GHz Band Voltage Controlled Oscillator (VCO) MMIC for Motion Detecting Sensors

  • Kim, Sung-Chan;Kim, Yong-Hwan;Ryu, Keun-Kwan
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.12-16
    • /
    • 2018
  • In this work, a voltage controlled oscillator (VCO) monolithic microwave integrated circuit (MMIC) was demonstrated for 10-GHz band motion detecting sensors. The VCO MMIC was fabricated using a $2-{\mu}m$ InGap/GaAs HBT process, and the tuning of the oscillation frequency is achieved by changing the internal capacitance in the HBT, instead of using extra varactor diodes. The implemented VCO MMIC has a micro size of $500{\mu}m{\times}500{\mu}m$, and demonstrates the value of inserting the VCO into a single chip transceiver. The experimental results showed that the frequency tuning characteristic was above 30 MHz, with the excellent output flatness characteristic of ${\pm}0.2dBm$ over the tuning bandwidth. And, the VCO MMIC exhibited a phase noise characteristic of -92.64 dBc/Hz and -118.28 dBc/Hz at the 100 kHz and 1 MHz offset frequencies from the carrier, respectively. The measured values were consistent with the design values, and exhibited good performance.

On the detection of faults on digital logic circuits using current sensor (전류 센서를 이용한 디지탈 논리회로의 고장 검출)

  • 신재흥;임인칠
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.173-183
    • /
    • 1996
  • In this paper, a new structure that can do fault detection and location of digial logic circuits more efficiently using current testing techniques is proposed. In the conventional method, observation point for steady state power supply current was only one, but in the proposed method more fault classes are divided for fault detection and location through the ovservation of steady state power supply current at two points. Also, it is shown that this structure can be easily applied in detection of stuck-open fault which is not easy to do testing with conventional current testing techniques. In the presented mehtod, an extra trasnistor is used, and current path is made compulsorily in the CMOS circuits in which no current path can be established in steady state, then it can be known that stuck-open tault is in the MOS transistor on the considering current path, if this path disappears due to stuck-open fault. The validity and the effectiveness is shwon, thorugh the SPICE simulation of circuits with fault and the current path search experiment using current path search program based on transistor short model wirtten in C language on SUN sparc workstation.

  • PDF