• Title/Summary/Keyword: Extinction Boundary Layer

Search Result 17, Processing Time 0.029 seconds

Vertical Change in Extinction and Atmospheric Particle Size in the Boundary Layers over Beijing: Balloon-borne Measurement

  • Chen, Bin;Shi, Guang-Yu;Yamada, Maromu;Zhang, Dai-Zhou;Hayashi, Masahiko;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.141-149
    • /
    • 2010
  • Aerosol size and number concentration were observed in the atmospheric boundary layer over Beijing (from near the ground to 1,200 m) on March 15 (a clear day) and 16 (a dusty day), 2005. The results were further compared with lidar measurements in order to understand the dependency of extinction on the particle size distribution and their vertical changes. The boundary layer atmosphere was composed of several sub-layers, and a dry air layer appeared between 400 and 1,000 m under the influence of dust event. In this dry air layer, the concentration of the fine-mode particles (diameter smaller than $1.0\;{\mu}m$) was slightly lower than the value on the clear day, while the concentration of coarse-mode particles (diameter larger than $1.0\;{\mu}m$) was remarkably higher than that on the clear day. This situation was attributed to the inflow of an air mass containing large amounts of Asian dust particles and a smaller amount of fine-mode particles. The results strongly suggest that the fine-mode particles affect light extinction even in the dusty atmosphere. However, quantitatively the relation between extinction and particle concentration is not satisfied under the dusty atmospheric conditions since laser beam attenuates in the atmosphere with high concentration of particles. Laser beam attenuation effect becomes larger in the relation between extinction and coarse particle content comparing the relation between extinction and fine particle content. To clarify this problem technically, future in situ measurements such as balloon-borne lidar are suggested. Here extinction was measured at 532 nm wavelength. Measurements of extinction at other wavelengths are desired in the future.

A theoretical study on the extinction of the premixed flame in a tube caused by a logitudinal velocity variation (축방향 유속변동에 의한 관내 예혼합화염의 소화특성에 관한 이론적 연구)

  • Kim, Nam-Il;Shin, Hyun-Dong;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.111-118
    • /
    • 2001
  • Many previous researches on the premixed flame in a tube have treated the unsteady flame behaviors but more detailed and fundamental research has been necessary. The study on the flame stabilization condition in a tube and the unsteady behaviors were carried out in recent years. In this paper, a mean velocity variation larger than the burning velocity was introduced to the stabilized flame for a period longer than the reaction time scale in order to examine the unsteady behavior of flame propagation. Through our previous work it was found that the effects of non-unity Lewis number on the flame extinction was negligible in the extinction by the boundary layer even though they were important in the extinction by the acoustic instability. In this paper we carried out an analytic approach to explain the previous experimental results. It showed that the heat loss, from a flame to the wall, is not a sufficient condition but a required one for the growth of the extinction boundary layer. In addition, the quenching and the flame stretch, under a strong unsteady flow field, are the main causes of the eventual extinction.

  • PDF

An Algorithm to Determine Aerosol Extinction Below Cirrus Cloud from Mie-LIDAR Signals

  • Wang, Zhenzhu;Wu, Decheng;Liu, Dong;Zhou, Jun
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.444-450
    • /
    • 2010
  • The traditional approach to inverting aerosol extinction makes use of the assumption of a constant LIDAR ratio in the entire Mie-LIDAR signal profile using the Fernald method. For the large uncertainty in the cloud optical depth caused by the assumed constant LIDAR ratio, an not negligible error of the retrieved aerosol extinction below the cloud will be caused in the backward integration of the Fernald method. A new algorithm to determine aerosol extinction below a cirrus cloud from Mie-LIDAR signals, based on a new cloud boundary detection method and a Mie-LIDAR signal modification method, combined with the backward integration of the Fernald method is developed. The result shows that the cloud boundary detection method is reliable, and the aerosol extinction below the cirrus cloud found by inverting from the modified signal is more efficacious than the one from the measured signal including the cloud-layer. The error due to modification is less than 10% taken in our present example.

Study of the Compressible Nozzle Flow in a Gas Circuit Breaker (가스차단기의 소호노즐 내부에서 발생하는 압축성 유동에 관한 연구)

  • Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.123-126
    • /
    • 2002
  • Very frequently the compressible flow in an extinction nozzle of gas circuit breaker is simulated under no arc assumption, which can be reasonable for both high and low current breakings. In the present study, computations are performed to investigate the major features of the compressible flows inside the arc extinction nozzle of gas circuit breaker. A fully implicit finite volume scheme is applied to solve the two-dimensional, steady, compressible, Wavier-Stokes equations. The computed results are validated with the previous experimental data available. Several types of turbulence models are explored to reasonably predict the complicated flows inside the arc extinction nozzle. The obtained results show that the shock wave boundary layer interaction inside the nozzle significantly influences the whole performance of the gas breaker.

  • PDF

Estimation of Particle Mass Concentration from Lidar Measurement (라이다 관측자료를 이용한 미세먼지 농도 산정)

  • Kim, Man-Hae;Yeo, Huidong;Sugimoto, Nobuo;Lim, Han-Cheol;Lee, Chul-Kyu;Heo, Bok-Haeng;Yu, Yung-Suk;Sohn, Byung-Ju;Yoon, Soon-Chang;Kim, Sang-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.169-177
    • /
    • 2015
  • Vertical distribution of particle mass concentrations was estimated from 8-year elastic-backscatter lidar and sky radiometer data, and from ground-level PM10 concentrations measured in Seoul. Lidar ratio and mass extinction efficiency were determined from aerosol optical depth (AOD) and ground-level PM10 concentrations, which were used as constraints to estimate particle mass concentration. The mean lidar ratio (with standard deviation) and mass extinction efficiency for the entire 8-year study period were $60.44{\pm}23.17$ sr and $3.69{\pm}3.00m^2g^{-1}$, respectively. The lidar ratio did not vary significantly with the ${\AA}ngstr{\ddot{o}}m$ exponent (less than ${\pm}10%$); however, the mass extinction efficiency decreases to $1.82{\pm}1.67m^2g^{-1}$ (51% less than the mean value) when the ${\AA}ngstr{\ddot{o}}m$ exponent is less than 0.5. This result implies that the particle mass concentration from lidar measurements can be underestimated for dust events. Seasonal variation of the particle mass concentration estimated from lidar measurements for the boundary layer, was quite different from ground-level PM10 measurements. This can be attributable to an inhomogeneous vertical distribution of aerosol in the boundary layer.

Radiation-Induced Oscillatory Instability in Diffusion Flames (복사 열손실로 인한 확산 화염의 맥동 불안정에 관한 연구)

  • Sohn, Chae Hoon;Kim, Jong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1185-1191
    • /
    • 1999
  • Radiation-induced oscillatory instability in diffusion flames is numerically investigated with nonlinear dynamics considered. As the simplest flame model, a diffusion flame established in the stagnant mixing layer is employed with optically thin gas-phase radiation and unity Lewis numbers for all species. Attention is focused on the radiation-induced extinction regime, which occurs at large $Damk\ddot{o}hler$ number. Once the steady flame structure is obtained for a prescribed value of the initial $Damk\ddot{o}hler$ number, transient solution of the flame is calculated after a finite amount of the $Damk\ddot{o}hler$-number perturbation is imposed on the steady flame. Transient evolution of the flame exhibits three types of flame-evolution behaviors, namely decaying oscillatory solution, diverging solution to extinction and stable limit-cycle solution. A dynamic extinction boundary is identified for laminar flamelet library.

Modelling of Aerosol Vertical Distribution during a Spring Season at Gwangju, Korea

  • Shin, Sung-Kyun;Lee, Kwon-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • The vertical distributions of aerosol extinction coefficient were estimated using the scaling height retrieved at Gwangju, Korea ($35.23^{\circ}N$, $126.84^{\circ}E$) during a spring season (March to May) of 2009. The aerosol scaling heights were calculated on a basis of the aerosol optical depth (AOD) and the surface visibilities. During the observation period, the scaling heights varied between 3.55 km and 0.39 km. The retrieved vertical profiles of extinction coefficient from these scaling heights were compared with extinction profile derived from the Light Detection and Ranging (LIDAR) observation. The retrieve vertical profiles of aerosol extinction coefficient were categorized into three classes according to the values of AODs and the surface visibilities: (Case I) the AODs and the surface visibilities are measured as both high, (Case II) the AODs and the surface visibilities are both lower, and (Others) the others. The averaged scaling heights for the three cases were $3.09{\pm}0.46km$, $0.82{\pm}0.27km$, and $1.46{\pm}0.57km$, respectively. For Case I, differences between the vertical profile retrieved from the scaling height and the LIDAR observation was highest. Because aerosols in Case I are considered as dust-dominant, uplifted dust above planetary boundary layer (PBL) was influenced this discrepancy. However, for the Case II and other cases, the modelled vertical aerosol extinction profiles from the scaling heights are in good agreement with the results from the LIDAR observation. Although limitation in the current modelling of vertical structure of aerosols exists for aerosol layers above PBL, the results are promising to assess aerosol profile without high-cost instruments.

Retrieval of Lidar Overlap Factor using Raman Lidar System (라만 라이다 시스템을 이용한 라이다 중첩함수 산출)

  • Noh, Young-M.;Muller, Detlef;Shin, Dong-Ho;Lee, Kyung-Hwa
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.450-458
    • /
    • 2009
  • The range-dependent overlap factor of a lidar system can be determined experimentally if a Raman backscatter signal by molecule is measured in addition to the usually observed elastic backscatter signal, which consists of a molecular component and a particle component. The direct determination of the overlap profile is presented and applied to a lidar measurement according to variation of telescope field-of-view and distance between telescope and transmitting laser. The retrieval of extinction coefficient by Raman method can generate high errors for heights below planetary boundary layer if the overlap effect is ignored. The overlap correction method presented here has been successfully applied to experimental data obtained in Gwangju, Korea.

Concentration Interaction of Premixed and Triple-layer Flames in Lean Burn with Methane Fuel (희박연소에서 발생하는 메탄의 농도 상호작용과 삼중화염에 대한 연구)

  • Oh, Tae-Kyun;Chung, Suk-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.171-178
    • /
    • 2006
  • The performance in the practical combustion system including reciprocating engines and gas turbine combustors is being much governed by turbulent reacting flow that is often analyzed by both a laminar flamelets concept and flame interaction. The characteristics of laminar flame interaction have been investigated numerically to provide basic understanding of wrinkled turbulent flames under concentration interaction resulting from inhomogeneity in fuel-air mixing, especially focused on the transition of flame characteristics such as diffusion flame, partially premixed diffusion flame, and triple-layer flame by the variation in the degree of premixedness. The extinction stretch rates to the premixedness have also been obtained in this paper. The boundary defining the regime of the existence of triple-layer flames as functions of both stretch rate and premixedness has been determined which agrees well with previously reported experiment measuring OH radical concentration peaks based on PLIF.

An Experimental Study on the Flame Characteristics of the Air/$C_3$$H_8$ Premixed Flame Using Large Axial Mean Velocity Variation (급격한 평균유속 변동에 의한 관내 Air/$C_3$$H_8$ 예혼합 화염의 소화특성에 관한 실험적 연구)

  • Kim, Nam-Il;Lee, Eun-Do;Sin, Hyeon-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.540-545
    • /
    • 2001
  • Many previous researches on the premixed flame in a tube have treated the unsteady flame behaviors in which the shape, position and intensity of the flame varied, but more detail and fundamental research has been necessary. The flame stabilization condition in a tube, a unique steady state, and the unsteady behaviors, using the stabilization condition as an initial condition, were carried out in recent years. In this paper, propane-air premixed flame was stabilized in a tube and the flame behavior was observed when the mean velocity variation was imposed into the opposite direction of the initial mean velocity. The velocity variation is larger than the burning velocity and longer than the reaction time scale. During the period of the velocity variation flame is not extinguished. But after the period of the mean velocity variation the flame could be re-stabilized or be extinguished depending on the experimental conditions: equivalence ratio, period of velocity variation and magnitude of velocity variation. The extinction mechanisms were classified into the two cases, one is caused by the flame stretch in the shear layer near the wall, and the other is caused by the vortices and vortexes, which are generted by the acoustic waves.