• Title/Summary/Keyword: External loading

Search Result 561, Processing Time 0.027 seconds

Load Fidelity Improvement of Piecewise Integrated Composite Beam by Construction Training Data of k-NN Classification Model (k-NN 분류 모델의 학습 데이터 구성에 따른 PIC 보의 하중 충실도 향상에 관한 연구)

  • Ham, Seok Woo;Cheon, Seong S.
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.108-114
    • /
    • 2020
  • Piecewise Integrated Composite (PIC) beam is composed of different stacking against loading type depending upon location. The aim of current study is to assign robust stacking sequences against external loading to every corresponding part of the PIC beam based on the value of stress triaxiality at generated reference points using the k-NN (k-Nearest Neighbor) classification, which is one of representative machine learning techniques, in order to excellent superior bending characteristics. The stress triaxiality at reference points is obtained by three-point bending analysis of the Al beam with training data categorizing the type of external loading, i.e., tension, compression or shear. Loading types of each plane of the beam were classified by independent plane scheme as well as total beam scheme. Also, loading fidelities were calibrated for each case with the variation of hyper-parameters. Most effective stacking sequences were mapped into the PIC beam based on the k-NN classification model with the highest loading fidelity. FE analysis result shows the PIC beam has superior external loading resistance and energy absorption compared to conventional beam.

A Study on the External System Modeling Using Branch Outage Sensitivity (선로고장감도를 이용한 외부 전력계통 모델링 기법에 관한 연구)

  • Kim, Hong-Rae;Kwon, Hyung-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.325-327
    • /
    • 2000
  • This paper addresses the issues of the external system modeling and power system state estimation with the external model. A set of significant branches is identified in the external system based on their branch outage sensitivities on the tie-lines. Measurements on these branches are transffered to internal system and updated in real-time. The state estimator is run for different loading conditions by using the actual measurements for the internal system and selected significant external system measurements while keeping the rest of the external system measurements at their base case values. Simulation results are presented using the IEEE 118 bus system as an example.

  • PDF

The dynamic stability of a nonhomogeneous orthotropic elastic truncated conical shell under a time dependent external pressure

  • Sofiyev, A.H.;Aksogan, O.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.329-343
    • /
    • 2002
  • In this research, the dynamic stability of an orthotropic elastic conical shell, with elasticity moduli and density varying in the thickness direction, subject to a uniform external pressure which is a power function of time, has been studied. After giving the fundamental relations, the dynamic stability and compatibility equations of a nonhomogeneous elastic orthotropic conical shell, subject to a uniform external pressure, have been derived. Applying Galerkin's method, these equations have been transformed to a pair of time dependent differential equations with variable coefficients. These differential equations are solved using the method given by Sachenkov and Baktieva (1978). Thus, general formulas have been obtained for the dynamic and static critical external pressures and the pertinent wave numbers, critical time, critical pressure impulse and dynamic factor. Finally, carrying out some computations, the effects of the nonhomogeneity, the loading speed, the variation of the semi-vertex angle and the power of time in the external pressure expression on the critical parameters have been studied.

Effects of Surface Loading on the Behavior of Soil-Reinforced Segmental Retaining Walls (상재하중이 블록식 보강토 옹벽의 거동에 미치는 영향)

  • 유충식;김주석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.109-116
    • /
    • 2000
  • This paper presents the results of investigation on the effects of surface loading on the performance of soil-reinforced segmental retaining walls using the finite element method of analysis. A parametric study was performed by varying location of surface loading. The results of the analyses indicate that the increment of the reinforcement tensile load due to the presence of surface load may be significantly over-estimated when using the conventional approach. Furthermore, the external stability should be carefully examined when a surface loading is present just outside the reinforced soil zone. The implications of the findings from this study to current design approaches are discussed in detail.

  • PDF

Acid Fermentation Characteristic of Food Wastes According to the Organic Loading Rate (유기물부하에 따른 음식물찌꺼기의 산발효 특성)

  • Park, Jin-Sik;Ahn, Chul-Woo;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.975-982
    • /
    • 2006
  • This study has been conducted to optimum operating conditions for effective acid fermentation according to OLR(organic loading rate) in the mesophilic and thermophilic acid fermentation process. The results are summarized as follows. In order to obtain reasonable acid fermentation efficiency in performing acid fermentation of food wastes in thermophilic condition, organic loading rate was required below 20 gVS/L.d. As $SCOD_{Cr}/TKN,\;SCOD_{Cr}/T-P$ of thermophilic acid fermented food wastes In organic loading rate 20 gVS/L.d were 18.9, 73.4 respectively, it was possible to utilize as external carbon source for denitrification in sewage treatment plant after solid-liquid separation as well as co-digestion of fermented food wastes and sewage sludge.

Analysis of elastic wave propagation in long beam using Fourier transformation

  • Mohammad Tahaye Abadi
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.165-172
    • /
    • 2023
  • This paper presents a novel method for modeling elastic wave propagation in long beams. The proposed method derives a solution for the transient transverse displacement of the beam's neutral axis without assuming the separation of variables (SV). By mapping the governing equation from the space domain to the frequency domain using Fourier transformation (FT), the transverse displacement function is determined as a convolution integral of external loading functions and a combination of trigonometric and Fresnel functions. This method determines the beam's response to general loading conditions as a linear combination of the analytical response of a beam subjected to an abrupt localized loading. The proposed solution method is verified through finite element analysis (FEA) and wave propagation patterns are derived for tone burst loading with specific frequency contents. The results demonstrate that the proposed solution method accurately models wave dispersion, reduces computational cost, and yields accurate results even for high-frequency loading.

Analysis of Post-Weld Deformation at the Heat-Affected Zone Using External Forces Based on the Inherent Strain

  • Ha, Yun-Sok;Jang, Chang-Doo;Kim, Jong-Tae;Mun, Hyung-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.56-62
    • /
    • 2007
  • An analytical method to predict the post-weld deformation at the heat-affected zone (HAZ) is presented in this paper. The method was based on the assumption that the post-weld deformation is caused by external forces resulting from the inherent strain, which is defined as the irrecoverable strain after removing structural restraints and loadings. In general, the equivalent loading method can be used to analyze distortions in welding areas because it is efficient and effective. However, if additional loads are applied after welding, it is difficult to determine the final strain on a welded structure. To determine the final strain of a welded structure at the HAZ more accurately, we developed a modified equivalent loading method based on the inherent strain that incorporated hardening effects. The proposed method was applied to calculate the residual stress at the HAZ. Experiments were also conducted on welded plates to evaluate the validity of the proposed method.

Behavior of Woven-glass/Epoxy Composites after Impact Loading (접촉하중형태에 따른 복합재의 거동변화)

  • 이재준;김병식;황성식;김태우;김찬묵
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.53-56
    • /
    • 2002
  • External low-velocity impact loadings onto the composites cause reduction of stiffness and/or strength. The reductions indicate that internal(external) damages were developed within the composites. These damages could be matrix cracking, fiber/matrix debonding, or delamination between layers. In previous studies, damage evaluation have been done by applying secondary mechanical loading such as buckle-driven compressive, or fatigue, or flexural loadings. An evaluation method by applying indentation loadings on the composites was proposed. The load-displacement curves obtained from the indentation testing provided the extent of damages within the composites due to impact loadings.

  • PDF

Optimum Design of the Cylindrical Shell under External Pressuer Loading (수압을 받는 원통형 쉘의 최적설계)

  • 임오강;이병우;전완수;정현기
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.85-94
    • /
    • 1995
  • The optimum design of the cylindrical shell under external pressure loading is considered. The design variable is a skin thickness of the unstiffened parallel middle body shell. Overall buckling strength and direct stress and displacements constraints are considered in the design problem The optimum design is achieved with one of the standard nonlinear constrained optimization technique. A method for calculating the sensitivity coefficients is developed using the direct differentiation.

  • PDF

A parametric investigation on the hysteretic behaviour of CFT column to steel beam connections

  • Esfandyary, R.;Razzaghi, M.S.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.205-228
    • /
    • 2015
  • The results of a numerical investigation pertaining to the hysteretic behaviour of concrete filled steel tubular (CFT) column to I-beam connections are discussed in detail. Following the verification of the numerical results against the available experimental tests, the nonlinear finite element (FE) analysis was implemented to evaluate the effects of different parameters including the column axial load, beam lateral support, shape and arrangement of stiffeners, stiffness of T-stiffeners, and the number of shear stiffeners. Pursuing this objective, an external CFT column to beam connection, tested previously, was selected as the case-study. The lateral forces on the structure were simulated, albeit approximately, using an incremental cyclic loading reversal applied at the beam tip. The results were compared in terms of hysteretic load-displacement curves, stress distributions in connection, strength, rotation, and energy dissipation capacity. It was shown that external T-stiffeners combined with internal shear stiffeners play an important role in the hysteretic performance of CFT columns to I-beam connections.