• Title/Summary/Keyword: External disturbances

Search Result 382, Processing Time 0.03 seconds

Gain scheduled control of magnetic suspension system

  • Kim, Young-Chol;Ryu, Seung-Ki;ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.321-326
    • /
    • 1993
  • A gain scheduling approach for the suspension control of a nonlinear MAGLEV System is presented. We show that this technique is ver useful for improving not only performance to the operational disturbances originating aerodynamic force but also robustness to the uncertainty of payload. As a scheduling variable, even though the external disturbance need to be estimated in real time, but the additive measurement is not required to do it. Some simulations show that the gain scheduling control system performs very well comparing with other method using a nonlinear feedback linearization or a fixed gain linear feedback.

  • PDF

KSR-III TVC 구동장치 릴리프밸브 시뮬레이션 분석 연구

  • Sun, Byung-Chan;Song, Eun-Jung
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.115-123
    • /
    • 2003
  • In this paper, in order to guarantee successful operation of KSR-III TVC actuator in the presence of excessive external disturbances, a relief valve is designed as a key component of the actuator. It is shown that the relief valve can resolve the stability problems which occur due to actuator failure in the presence of excessive disturbance torques on the actuator. Six degree-of-freedom simulation shows that relief valves with low operating pressure and low LOHM parameter may be better is stability and performance of the TVC actuator system.

  • PDF

The Analytic and Experimental Research on Dynamic Characteristics of EMV System (EMV시스템의 동특성 분석을 위한 모델 및 실험적 고찰)

  • 박승현;이종화;김도중;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.85-92
    • /
    • 2002
  • This paper presents the effects of design and operating parameters to meet the static and dynamic performances of the electro-mechanical valve(EMV) actuator which can provide more flexible controllability of valve events compared to conventional variable valve actuation devices. The model of the EMV system was also set up and applied to identify the dynamic behavior of the system. And the effects of external disturbances were also investigated such as cylinder pressure, armature neutral position and current supplying time effects and so on. Experiments were carried out to verify the model using the prototype actuator on test bench, it was found that there is a relatively good agreement between experimental data and modeling results. Also, the actuators meet the general engine speed range (over 6000rpm) and the variable valve event control for various VVT effects.

Design and Speed Control of ER Brake System Using GER Fluids (GER 유체를 이용한 ER Brake System의 설계 및 속도 제어)

  • Yook, J.Y.;Choi, S.B.;Yook, W.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.365-371
    • /
    • 2012
  • This paper presents robust control performance of a direct current(DC) motor with brake system adopting a giant electrorheological(GER) fluid, whose distinguished feature is an extremely high value of yield stress. As a first step, Bingham characteristics of the GER fluid is experimentally investigated using the Couette type electroviscometer. A cylindrical type of ER brake is then devised based on the Bingham model, and its braking torque is evaluated. Structural analysis of ER break is performed using ANSYS. After formulating the governing equation of motion for the DC motor with ER brake system, a sliding mode control algorithm, which is very robust to external disturbances and parameter uncertainties, is synthesized and experimentally realized in order to achieve desired rotational speed trajectories. The tracking responses of the control system are then evaluated and verified by presenting speed control performance.

Application of Perturbation Estimation using Fractional-Order Hold Technique to Sliding Mode Control (Fractional-Order Hold기법을 이용한 섭동 추정기의 슬라이딩 모드 제어에 적용)

  • Nam Yun Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.121-128
    • /
    • 2006
  • This paper deals with the application of enhanced perturbation estimation (SMCEPE) to sliding mode control of a dynamic system in the presence of perturbations including external disturbances, unpredictable parameter variations, and unstructured dynamics. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE), the proposed one can offer robust control performances under serious control conditions, such as fast dynamic perturbations and slow loop-closure speeds, without a priori knowledge on upper bounds of perturbations. The perturbation estimator in SHCEPE also has more adaptability owing to the fractional-order hold technique. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a two-link robot manipulator.

Sliding Mode Control of the ABS with a Disturbance Observer (관측기를 가진 ABS 슬라이딩 모드 제어법)

  • Hwang Jin-Kwon;Oh Kyeung-Heub;Song Chul-Ki
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.523-530
    • /
    • 2005
  • This paper addresses sliding mode control (SMC) of the anti-lock braking system (ABS) with a compensator of model uncertainties such as vehicle parameter variation, unmodeled dynamics, and external disturbances. A sliding mode controller (SMC) is designed with a nominal vehicle model to achieve a desired wheel slip ratio. A disturbance observer (DOB) is introduced to compensate the model uncertainties and is designed with a transfer function of a hydraulic brake dynamics. Through simulations on the model uncertainties, it is verified that the sliding mode control with the DOB can give the simulation results better than the sliding mode control without the DOB.

  • PDF

Predictive System Evaluation of Residual Stresses of Plate Butt Welding Using Neural Network (신경회로망을 이용한 평판 맞대기용접의 잔류응력 예측시스템 개발)

  • 차용훈;성백섭;이연신
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.80-86
    • /
    • 2003
  • This study develops a system for effective prediction of residual stresses by the backpropagation algorithm using the neural network. To achieve this goal, a series of experiments were carried out to and measured the residual stresses using the sectional method. With the experimental results, the optional control algorithms using a neural network could be developed in order to reduce the effect of the external disturbances during GMA welding processes. Then the results obtained from this study were compared between the measured and calculated results, weld guality might be controlled by the neural network based on backpropagation algorithm.. This system can not only help to understand the interaction between the process parameters and residual stress, but also improve the quantity control for welded structures.

Adaptive Sliding Mode Control for Compensation of Uncertainty in Feedback Linearized Skid-to-Turn (STT) Missiles (궤환선형화된 STT 미사일의 불확실성 보상을 위한 적응 슬라이딩 모드 제어)

  • 김민수;좌동경;최진영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.267-274
    • /
    • 1999
  • This paper proposes an adaptive sliding mode control scheme for an autopilot design of Skid-to-Turn (STT) missiles. The feedback linearization controller eliminates nonlinear terms in STT dynamics and makes the entire system linear. But the modeling errors in dynamics and the external disturbances exert bad influence on the performance of the feedback linearization controller. To handle these uncertainties, an adaptive control scheme is developed, where a bound of the uncertainties is estimated by an adaptive law based on a sliding surface. The asymptotic output tracking is proved by using the Lyapunov stability theory. Simulations for STT missiles illustrate the validity of the proposed scheme.

  • PDF

Control of Disturbance Added Servo System Using Fuzzy Controller (Fuzzy 제어기를 이용한 외란부가 Servo System 제어)

  • Kim, Tae-Woo;Lee, Oh-Gul;Chung, Hyeng-Hwan;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.699-702
    • /
    • 1991
  • A servo system requires faster and more accurate dynamic responses. Generally a PD control is mainly used to obtain the precision, and in the other hand a fuzzy control to improve the transient response and to cope with the nonlinearity of systems. Recently hybrid control, which is attempted to combine the advantages of PD control and a Fuzzy control was proposed, but this technique requires complicate design procedures. Therefore in this paper, a Fuzzy controller with a series of membership functions, and various sampling periods and rules, was designed on the basis of Lyapunov stability theory and auto tuning methods of input scale factors. And also it was showed to have the excellent adaptive performances against internal-external disturbances and the usefulness of this controller from the results of simulations.

  • PDF

A Feedback Control of Pump-Controlled Electro-Hydrostatic Actuation System (펌프 가변제어기반 유압시스템의 피드백 제어)

  • Ryu, Jae-Kwan;Seo, Hyung-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.837-843
    • /
    • 2016
  • This paper presents a position control strategy for a pump-controlled electro-hydrostatic actuator (EHA) using feedforward control with disturbance compensation. As the disturbance observer is used to estimate nonlinear dynamics of EHA, which has valve-opening conditionals, as well as external disturbances, an additional feedforward control is adopted to achieve rapid response. The effectiveness of the proposed control strategy is verified through experiment using an EHA test bench. The proposed controller shows better tracking performance compared with a conventional PID controller.