• Title/Summary/Keyword: External and internal stability

Search Result 277, Processing Time 0.024 seconds

Reliability analysis of shallow tunnel with surface settlement

  • Yang, X.L.;Li, W.T.
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.313-326
    • /
    • 2017
  • Based on the reliability theory and limit analysis method, the roof stability of a shallow tunnel is investigated under the condition of surface settlement. Nonlinear Hoek-Brown failure criterion is adopted in the present analysis. With the consideration of surface settlement, the internal energy and external work are calculated. Equating the rate of energy dissipation to the external rate of work, the expression of support pressure is derived. With the help of variational approach, a performance function is proposed to reliability analysis. Improved response surface method is used to calculate the Hasofer-Lind reliability index and the failure probability. In order to assess the validity of the present results, Monte-Carlo simulation is performed to examine the correctness. Sensitivity analysis is used to estimate the influence of different variables on reliability index. Among random variables, the unit weight significantly affects the reliability index. It is found that the greater coefficient of variation of variables lead to the higher failure probability. On the basis of the discussions, the reliability-based design is achieved to calculate the required tunnel support pressure under different situations when the target reliability index is obtained.

SURFACE CHANCE OF EXTERNAL HEXAGON OF IMPLANT FIXTURE AND INTERNAL HEXAGON OF ABUTMENT AFTER REPEATED DELIVERY AND REMOVAL OF ABUTMENT (지대주의 반복적인 착탈에 따른 임플랜트 고정체의 external hexagon과 지대주 internal hexagon의 변화에 관한 연구)

  • Jung Seok-Won;Kim Hee-Jung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.528-543
    • /
    • 2005
  • Statement of problem: Repeated delivery and removal of abutment cause some changes such as wear, scratch or defect of hexagonal structure. It may increase the value of rotational freedom(RF) between hexagonal structures. Purpose: The purpose of this study was to evaluate surface changes and rotational freedom between the external hexagon of the implant fixture and internal hexagon of abutment after repeated delivery and removal under SEM and toolmaker's microscope. Materials and methods: Implant systems used for this study were 3i and Avana. Seven pail's of implant fixture, abutment and abutment screws for each system were selected and all fixtures were perpendicularly mounted in liquid unsaturated polyesther with dental surveyor. Each one was embedded beneath the platform of fixture. Surfaces of hexagonal structure before repeated closing and opening of abutment were observed using SEM and rotational freedom was measured by using toolmaker's microscope. Each abutment was secured to the implant future by each abutment screw with recommended torque value using a digital torque controller and was repeatedly delivered and removed by 20 times respectively. After experiment, evaluation for the change of hexagonal structures and measurement of rotational freedom were performed. Result : The results were as follows; 1. Wear of contact area between implant fixture and abutment was considerable in both 3i and Avana system. Scratches and defects were frequently observed at the line-angle of hexagonal structures of implant fixture and abutment. 2. In the SEM view of the external hexagon of implant fixture, the point-angle areas at the corner edge of hexagon were severely worn out in both systems. It was more notable in the case of 3i systems than in that of Avana systems. 3. In the SEM view of the internal hexagon of abutment, Gingi-Hue abutment of 3i systems showed severe wear in micro-stop contacts that were machined into the corners to prevent rotation and cemented abutment of Avana systems showed wear in both surface area adjacent to the corner mating with external hexagon of implant fixture. 4 The mean values of rotational freedom between the external hexagon of the implant fixture and internal hexagon of abutment were 0.48$\pm$0.04$^{\circ}$ in pre-tested 3i systems and 1.18$\pm$0.25$^{\circ}$ after test, and 1.80$\pm$0.04$^{\circ}$ in pre-tested Avana systems and 2.61$\pm$0.16$^{\circ}$ after test. 5. Changes of rotational freedom after test shouted statistical)y a significant increase in both 3i and Avana systems(P<0.05, paired t-test). 6. Statistically, there was no significant difference between amount of increase in the rotational freedom of 3i systems and amount of increase in that of Avana ones(P>0.05, unpaired t-test). Conclusion: Conclusively, it was considered that repeated delivery and remove of abutment by 20 times would not have influence on screw joint stability. However, it caused statistically the significant change of rotational freedom in tested systems. Therefore, it is suggested that repeated delivery and remove of abutment should be minimal as possible as it could be and be done carefully Additionally, it is suggested that the means or treatment to prevent the wear of mating components should be devised.

A study on the treatment of external water pressure for the water pressure tunnel at the structural analysis of concrete lining (압력도수터널 콘크리트 라이닝 구조 계산시 외수압 처리에 관한 연구)

  • Lee, Hyeon-Sub;Lee, Young-Joon;Seo, Seung-Woo;Hwang, Young-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.653-664
    • /
    • 2015
  • When the structural analysis is performed for the concrete lining of the water pressure tunnel, many parameters are considered such as relaxed ground loads, internal water pressure, external water pressure, the shrinkage of the concrete lining, grouting pressure, etc. But, there are no standards and manuals for the structural analysis for the concrete lining of the water pressure tunnel. Above all, the external water pressure has an much effect on the stability of tunnel. So, in case that permeability of ground is large, the external water pressure should be decreased by installation of weep hole, or reinforced ground by ground improvement grouting should be pressed by the external water pressure instead. But, when weep hole is installed to reduce the external water pressure, the many problems may me occurred. Thus, reasonable approach for treatment of the external water pressure is necessary if weep hole is not installed. Therefore, the purpose of this study is to analyze design cases and studies for treatment of the external water pressure in performing structural analysis for the concrete lining of the water pressure tunnel, and to find reasonable method for tunnel lining modeling which is the treatment of the external water pressure according to permeability of ground and consequently the design of ground improvement grouting.

A study on the evaluation of structural stability of masonry cultural heritage based on the characteristics of the back-fill material and the stiffness of the ground (뒤채움재의 물성과 지반의 강성에 따른 석축 문화재의 구조 안정성 평가 연구)

  • Lee, Ga-Yoon;Lee, Sung-Min;Kim, Jae Young;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.53-63
    • /
    • 2024
  • The cultural heritage of fortresses is often exposed to external elements, leading to significant damage from stone weathering and natural disasters. However, due to the nature of cultural heritage, dismantling and restoration are often impractical. Therefore, the stability of fortress cultural heritage was evaluated through non-destructive testing. The durability of masonry cultural heritages is greatly influenced by the physical characteristics of the back-fille material. Dynamic characteristics were assessed, and endoscopy was used to inspect internal fillings. Additionally, a finite element analysis model was developed considering the surrounding ground through elastic wave exploration. The analysis showed that the loss of internal fillings in the target cultural heritage site could lead to further deformation in the future, emphasizing the need for careful observation.

Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties

  • Peng Zhang;Jun Song;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.235-250
    • /
    • 2023
  • The present paper examines the stability analysis of the buckling differentiae of the small-scale, non-uniform porosity-dependent functionally graded (PD-FG) tube. The high-order beam theory and nonlocal strain gradient theory are operated for the mathematical modeling of nanotubes based on the Hamilton principle. In this paper, the external radius function is non-uniform. In contrast, the internal radius is uniform, and the cross-section changes along the tube length due to these radius functions based on the four types of useful mathematical functions. The PD-FG material distributions are varied in the radial direction and made with ceramics and metals. The governing partial differential equations (PDEs) and associated boundary conditions are solved via a numerical method for different boundary conditions. The received outcomes concerning different presented parameters are valuable to the design and production of small-scale devices and intelligent structures.

Isokinetic Shoulder Joint Characteristics by Position: Professional Korean Female Volleyball Players

  • Song, Young Wha;Kim, Yong Youn
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.8 no.2
    • /
    • pp.1158-1162
    • /
    • 2017
  • The purpose of the study was to investigate the strength of sokinetic muscle by the position of a volleyball players. Analysis and comparison of shoulder dynamic stability will be conducted according to rotational movement of the shoulder during spiking and serving amongst the various positions. Fifty professional Korean female volleyball players (age: 20~30), all different positions - attacker (left and right), center, setter, and libero were The concentric peak torque, strength ration of the internal and external rotation of the shoulder girdle for both dominant and non-dominant arms. Firstly, there were significant differences found for the strength ratio between the setter and the other positions in the dominant arm. On a second note, there was a significant decrease in shoulder dynamic stabilization for both the attacker and center in the dominant arm. However, there were no significant differences for the setter or the libero. This study suggests that the isokinetic muscle strengths of the volleyball players are different from each other.

Current Treatment of Tibial Pilon Fractures (경골 천정(pilon) 골절의 최신 치료)

  • Lee, Jun-Young
    • Journal of Korean Foot and Ankle Society
    • /
    • v.15 no.2
    • /
    • pp.51-57
    • /
    • 2011
  • Pilon fractures involving distal tibia remain one of the most difficult therapeutic challenges that confront the orthopedic surgeons because of associated soft tissue injury is common. To introduce and describe the diagnosis, current treatment, results and complications of the pilon fractures. In initial assessment, the correct evaluation of the fracture type through radiographic checkup and examination of the soft tissue envelope is needed to decide appropriate treatment planning of pilon fractures. Even though Ruedi and Allgower reported 74% good and excellent results with primary open reduction and internal fixation, recently the second staged treatment of pilon fractures is preferred to orthopedic traumatologist because of the soft tissue problem is common after primary open reduction and internal fixation. The components of the first stage are focused primarily on stabilization of the soft tissue envelope. If fibula is fractured, fibular open reduction and internal fixation is integral part of initial management for reducing the majority of tibial deformities. Ankle-spanning temporary external fixator is used to restore limb alignment and displaced intraarticular fragments through ligamentotaxis and distraction. And the second stage, definitive open reduction and internal fixation of the tibial component, is undertaken when the soft tissue injury has resolved and no infection sign is seen on pin site of external fixator. The goals of definitive internal fixation should include absolute stability and interfragmentary compression of reduced articular segments, stable fixation of the articular segment to the tibial diaphysis, and restoration of coronal, transverse, and sagittal plane alignments. The location, rigidity, and kinds of the implants are based on each individual fractures. The conventional plate fixation has more advantages in anatomical reduction of intraarticular fractures than locking compression plate. But it has more complications as infection, delayed union and nonunion. The locking compression plate fixation provides greater stability and lesser wound problem than conventional implants. But the locking compression plate remains poorly defined for intraarticular fractures of the distal tibia. Active, active assisted, passive range of motion of the ankle is recommended when postoperative rehabilitation is started. Splinting with the foot in neutral is continued until suture is removed at the 2~3 weeks and weight bearing is delayed for approximately 12 weeks. The recognition of the soft tissue injury has evolved as a critical component of the management of pilon fractures. At this point, the second staged treatment of pilon fractures is good treatment option because of it is designed to promote recovery of the soft tissue envelope in first stage operation and get a good result in definitive reduction and stabilization of the articular surface and axial alignment in second stage operation.

Effects of damping on the linear stability of a free-free beam subjected to follower and transversal forces

  • Kavianipour, O.;Sadati, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.709-724
    • /
    • 2009
  • In this paper a free-free uniform beam with damping effects subjected to follower and transversal forces at its end is considered as a model for a space structure. The effect of damping on the stability of the system is first investigated and the effects of the follower and transversal forces on the vibration of the beam are shown next. Proportional damping model is used in this work, hence, the effects of both internal (material) and external (viscous fluid) damping on the system are noted. In order to derive the frequency of the system, the Ritz method has been used. The mode shapes of the system must therefore be extracted. The Newmark method is utilized in the study of the system vibration. The results show that an increase in the follower and transversal forces leads to an increase of the vibrational motion of the beam which is not desirable.

A Design of the New Robust Disturbance Observer (새로운 구조의 강건한 외란관측기 설계)

  • Park, Jukwang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.387-394
    • /
    • 2016
  • This paper proposes a new disturbance observer(DOB). The purpose of the DOB is to realize the plant performing like a model in the presence of disturbances which come from external environment and inherent nonlinearities and uncertainties in the plant. It is shown that the proposed DOB compensates those disturbances, nonlinearities and uncertainties, effectively. And it is theoretically proved that the proposed DOB can be guaranteed its stability for the stable plant. Its availability is shown by applying the DOB to the stabilization platform for EOTS(Electro Optical Tracking System).

The Stability Analysis of Non-Conservative System including Damping Effects (감쇠효과(減衰效果)를 고려한 비보존력계(非保存力系) 안정성(安定性) 해석(解析))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.57-65
    • /
    • 1990
  • The finite element menthod for the investigation of the static and dynamic stability of the plane framed structures subjected to non-conservative forces is presented. By using the Hermitian polynomial as the shape function, the geometric stiffness matrix, the load correction stiffness matrix for non-conservative forces, and the matrix equation of internal and external damping are derived. Then, a matrix equation of the motion for the non-conservative system is formulated and the critical divergence and flutter loads are determined from this equation.

  • PDF