• Title/Summary/Keyword: External and internal stability

Search Result 275, Processing Time 0.025 seconds

Landing Motion Analysis of Human-Body Model Considering Impact and ZMP Condition (충격과 ZMP 조건을 고려한 인체 모델의 착지 동작 해석)

  • So Byung Rok;Kim Wheekuk;Yi Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.543-549
    • /
    • 2005
  • This paper deals with modeling and analysis fer the landing motion of a human-body model. First, the dynamic model of a floating human body is derived. The external impulse exerted on the ground as well as the internal impulse experienced at the joints of the human body model is analyzed. Second, a motion planning algorithm exploiting the kinematic redundancy is suggested to ensure stability in terms of ZMP stability condition during a series of landing phases. Four phases of landing motion are investigated. In simulation, the external and internal impulses experienced at the human joints and the ZMP history resulting from the motion planning are analyzed for two different configurations. h desired landing posture is suggested by comparison of the simulation results.

INFLUENCE OF IMPLANT-ABUTMENT INTERFACE DESIGN, IMPLANT DIAMETER AND PROSTHETIC TABLE WIDTH ON STRENGTH OF IMPLANT-ABUTMENT INTERFACE : THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS (임플랜트의 지대주 연결방식, 임플랜트의 직경 및 지대주 연결부위의 직경 차이에 따른 응력분포에 관한 삼차원 유한요소분석)

  • Oh Se-Woong;Yang Jae-Ho;Lee Sun-Hyung;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.393-404
    • /
    • 2003
  • Statement of problem. Higher incidence of prosthetic complications such as screw loosening, screw fracture has been reported for posterior single tooth implant. So, there is ongoing research regarding stability of implant-abutment interface. One of those research is increasing the implant diameter and prosthetic table width to improve joint stability. In another part of this research, internal conical type implant-abutment interface was developed and reported joint strength is higher than traditional external hex interface. Purpose. The purpose of this study is to compare stress distribution in single molar implant between external hex butt joint implant and internal conical joint implant when increasing the implant diameter and prosthetic table width : 4mm diameter, 5mm diameter, 5mm diameter/6mm prosthetic table width. Material and method. Non-linear finite element models were created and the 3-dimensional finite element analysis was performed to see the distribution of stress when 300N static loading was applied to model at $0^{\circ},\;15^{\circ},\;30^{\circ}$ off-axis angle. Results. The following results were obtained : 1. Internal conical joint showed lower tensile stress value than that of external hex butt joint. 2. When off-axis loading was applied, internal conical joint showed more effective stress distribution than external hex butt joint. 3. External hex butt joint showed lower tensile stress value when the implant diameter was increased. 4. Internal conical joint showed lower tensile stress value than external hex butt joint when the implant diameter was increased. 5. Both of these joint mechanism showed lower tensile stress value when the prosthetic table width was increased. Conclusion. Internal conical joint showed more effective stress distribution than external hex joint. Increasing implant diameter showed more effective stress distribution than increasing prosthetic table width.

Development of Design Program for Block-type Reinforced Earth Retaining Wall (블록식 보강토 옹벽 설계프로그램 개발)

  • Lee, Chung-Won;Yoo, Ji-Hoon;Min, Yeon-Sik;Chang, Dong-Su;Lim, Hyun-Taek;Moon, Yong-Bae;Kim, Seung-Tai;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.75-84
    • /
    • 2014
  • This study aims to develop the program for design of a reinforced earth retaining wall. For this purpose, the external stability such as overturning, sliding and bearing capacity and the internal stability such as pull-out failure and tensile rupture of the reinforced earth retaining wall with the reinforcement spacing and the backfill inclination were examined. In addition, the calculated results from the developed program were verified by comparing with the simulated results based on the three-dimensional finite element analysis. It is expected that this program contributes to effective design of the reinforced earth retaining wall.

A Study of the Method for External Noise Shielding using the GIS UHF Sensor Module Applied to the Partial Discharge Signal Sensitivity and Method of Frequency Transforming in the Internal GIS (GIS내부의 부분방전신호 감도개선 및 주파수변환기법에 의한 GIS UHF Sensor 모듈의 외부노이즈차폐기법에 관한 연구)

  • Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.728-732
    • /
    • 2010
  • GIS(Gas insulated switching gear) is power equipment with excellent dielectric strength and is economy merit in high confidence and stability. Recently, because equipment of GIS was occurring problem of confidence used for a long time, partial discharge on-line diagnosis systems have been importantly recognized. Partial discharge (PD) detection is an effective means for monitoring and evaluation of dielectric condition of gas insulated system (GIS). The ultra-high-frequency (UHF) PD detection technique can detect and locate the PD sources inside GIS by detecting electromagnetic wave emitted from PD source. Therefore, real-time diagnostic system using UHF detection method has been developed for this application is being expanded gradually. However, the signal of partial discharge occurring in SF6 gas is very weak and susceptible to external noises which mainly consist of PD in air. Thus, it is important to distinguish the PD in SF6 gas more sensitively from the external noises. Unfortunately, these external noise signals and the partial discharge signals have very similar characteristics. Therefore, to solve this problem, we need the signal processing method for distinguish partial discharge signals with external noise signals for improvement of SNR(signal to noise ratio) and sensitivity. In this paper, we proposed internal signal processing method for removing external noise signals with built-in pre.amplifier and frequency conversion circuit.

Sommerfeld Phenomena of an Asymmetric Rotor (축비대칭 회전계에서 나타나는 Sommerfeld 현상)

  • Shin, Eung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.56-63
    • /
    • 2014
  • This paper provides a comprehensive study on the Sommerfeld phenomena in an asymmetric rotor with a nonideal power supply. An analytical approach is employed by deriving the equations of motion in a nondimensional form. The system parameters, including the asymmetry, external and internal damping, and motor power, are chosen to find their effects on the characteristics of the Sommerfeld phenomena and critical behavior around resonance. Results show that the rotor asymmetry suppresses the Sommerfeld phenomena and helps pass through resonance if the asymmetry is small. However, it is observed that the opposite effects exist in case of a large asymmetry. It is also found that the effects of external damping on the Sommerfeld phenomena are similar to those of the asymmetry, whereas internal damping has less effects than external damping and the asymmetry. By performing numerical simulations, four types of critical behavior are identified from the viewpoints of the stability and the passage through resonance.

A Study of Connection Stability for Reinforced Retaining Wall Constructed with Soilbag with Varying Connection Strength (연결강도 변화에 의한 Soilbag 보강토 옹벽 연결부의 안정성 평가)

  • Lee, Sang-Moon;Choi, Changho;Shin, Eun-Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 2013
  • Environmental-friendly and economical construction are the recent issues for civil structures and soilbag as facing wall is widely used for cut-slope remediation projects. However, the stability of structures is an important issue for the use of environmental-friendly and economical materials. In order to understand the stability of soilbag reinforced retaining wall, tensile resistance, rupture, tensile strength, and internal/external safety factor of the wall were analyzed with MSEW program and the results were compared to the safety factor of block-type reinforced walls. The stability of retaining wall was analyzed with reduction coefficients of connection strength to check the connection stability. Because it is possible to move between soilbag and geogrid connector for soilbag retaining wall, the safety factor of the wall was analyzed with different inclination angles of soilbag. The analysis result shows that the connection strength and internal/external stability of soilbag reinforced wall satisfy the stability criteria.

3D stability of shallow cavity roof with arbitrary profile under influence of pore water pressure

  • Luo, W.J.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.569-575
    • /
    • 2018
  • The stability of shallow cavities with an arbitrary profile is a difficult issue in geotechnical engineering. This paper investigates this problem on the basis of the upper bound theorem of limit analysis and the Hoek-Brown failure criterion. The influence of pore pressure is taken into consideration by regarding it as an external force acting on rock skeleton. An objective function is constructed by equating the internal energy dissipation to the external force work. Then the Lagrange variation approach is used to solve this function. The validity of the proposed method is demonstrated by comparing the analytical solutions with the published research. The relations between shallow and deep cavity are revealed as well. The detaching curve of cavity roof with elliptical profile is obtained. In order to facilitate the application of engineering practice, the numerical results are tabulated, which play an important role in tunnel design and stability analysis of roof. The influential factors on potential collapse are taken into consideration. From the results, the impact of various factors on the extent of detaching is seen intuitively.

A Study on the Hydrostatic Mooring Stability of Submerged Floating Ellipsoidal Habitats

  • Pak, Sang-Wook;Lee, Han-Seok;Park, Jin
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.328-334
    • /
    • 2019
  • Underwater architecture in providing a comfortable living space underwater is mandated to survive prevailing environmental loads, especially hydrostatic ambient water pressure exerted on the structure of individual habitat hulls at depth and hydrodynamic fluctuation of external forces that perturb the postural equilibrium and mooring stability of the underwater housing system, for which the design including the hull shape and mooring system constraint the responses. In this study, the postural stability of a proposed underwater floating housing system with three vertically connected ellipsoidal-shape habitat hulls of different sizes are theorized and calculated for hydrostatic stability, using MATLAB in the volumetric integration of a hull and the weight of operational loads under assumed scenarios. The assumptions made in the numerical method to estimate the stability of the habitat system include the fixed weight of the hulls, and their adjustable loads within operational limits for the set meteorological oceanic conditions. The purpose of this study was to numerically manipulate a) The buoyancy and b) The adjusted center of mass of the system within the range of designed external and internal load changes, by which the effective mooring system capability and postural equilibrium requirements were argued with the quantitative analysis.

Effect of Support Surface Form on Abdominal Muscle Thickness During Flank Exercise (플랭크 운동 시 지지면의 형태가 복부 근육의 두께 변화에 미치는 영향)

  • Kim, Hyeonsu;Lee, Keoncheol
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.3
    • /
    • pp.197-204
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the effects of the plank exercise to strengthen the core muscles on the muscle thickness of external and internal obliques and transverse abdominis muscle depending on the form of the support surface. Methods: This study was randomized to 12 males and 12 females in their 20s and conducted three times a week for 4 weeks. The subjects were divided into the two groups and performed flank exercise on a stable surface (stable surface group) and an unstable surface (unstable surface group). A mat was used as a stable surface, and an TOGU used as a unstable surface. Results : In both stable and unstable surface, the thickness changes of the transverse abdominis and external and internal oblique muscle increased (p<.05). In the unstable surface, there was a greater increase in the thickness change of the transverse abdominis and external oblique muscles in the flank exercise than in the stable surface (p.<05). Among them, the greatest increase was found in the external abdominal muscle (p<.05). Conclusion : This study found that the flank exercise was more effective in strengthening the abdominal muscles on an unstable surface, when compared with the outcomes on a stable one. It is also thought to have the most effect on the muscle activity of the external oblique muscle on unstable surface.

Theoretical Analysis of Interface Crack on Thin Plate (얇은 접합층의 계면균열에 대한 이론적 해석)

  • Nho, Hwan-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.627-634
    • /
    • 2007
  • A bonded plate or a coated part can be debonded by external impact or thermal expansion. To analyse adhesive strength, the blister test is generally adopted. In this paper, a blister test is modelled theoretically and then the stability and bifurcation of the blister are studied under several different cases. The blister is simplified to consist of a pure bending plate attached elastically to the rigid substrate. Expression of the energy release rate is obtained as a form of an explicit function for a circular-type blister or tunnel-type blister grown by controlling the internal pressure or internal volume. Stability and bifurcation are also studied in the frame of the quasi-static evolution. The study shows that the circular- type blister propagates with the first mode of bifurcation and that the tunnel-type blister propagates with a regular wave. It is proved that the waves have the same form on two side lines of the tunnel and that the wave length can be obtained. When the internal pressure is controlled, the blister is unstable, but when the internal volume is controlled, it is stable.